Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site and Field Experiment
2.2. Topo-Bathymetric Surveys
2.3. Video Data
2.4. cBathy Algorithm
cBathy Settings
3. Results
3.1. Topo-Bathymetric Surveys Comparison
3.2. cBathy Video-Derived Bathymetries vs. Surveys
3.3. cBathy Error Assessment
3.4. cBathy Video-Derived Morphological Evolution
3.5. cBathy Video-Derived Profile Response
4. Discussion
4.1. cBathy Performance and Sources of Errors
4.2. LPCA Beach Morphological Response to Changes in Wave Direction
4.3. Perspectives and Future Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
eTBR | erosive Transverse Bar and Rip |
GCPs | Ground Control Points |
LTT | Low-Tide Terrace |
LPCA | La Petite Chambre d’Amour |
PPK-GNSS | Post Processing Kinematic Differential Global Navigation Satellite System |
RMSE | Root Mean Square Error |
RTK-DGPS | Real-Time Kinematic Differential Global Positioning System |
RTK-GNSS | Real-Time Kinematic Global Navigation Satellite System |
RTR | Relative Tidal Range |
TBR | Transverse Bar and Rip |
UAV | Unmanned Aerial Vehicle |
References
- Cowell, P.J.; Thom, B.G. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Cambridge University Press: Cambridge, UK, 1994; pp. 33–86. [Google Scholar]
- Davidson, M.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S. The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coast. Eng. 2007, 54, 463–475. [Google Scholar] [CrossRef]
- Dugan, J.; Morris, W.; Vierra, K.; Piotrowski, C.; Farruggia, G.; Campion, D. Jetski-based nearshore bathymetric and current survey system. J. Coast. Res. 2001, 17, 900–908. [Google Scholar]
- MacMahan, J. Hydrographic surveying from personal watercraft. J. Surv. Eng. 2001, 127, 12–24. [Google Scholar] [CrossRef]
- Van Son, S.; Lindenbergh, R.; De Schipper, M.; De Vries, S.; Duijnmayer, K. Using a personal watercraft for monitoring bathymetric changes at storm scale. In Proceedings of the Hydro9 Conference, Cape Town, South Africa, 10–12 November 2009. [Google Scholar]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng. 2019, 149, 39–48. [Google Scholar] [CrossRef]
- Lyzenga, G.A.; Ahrens, T.J. The relation between the shock-induced free-surface velocity and the postshock specific volume of solids. J. Appl. Phys. 1978, 49, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobley, C.D.; Sundman, L.K.; Davis, C.O.; Bowles, J.H.; Downes, T.V.; Leathers, R.A.; Montes, M.J.; Bissett, W.P.; Kohler, D.D.; Reid, R.P.; et al. Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl. Opt. 2005, 44, 3576–3592. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Battjes, J.A.; Janssen, J. Energy loss and set-up due to breaking of random waves. In Proceedings of the 16th Conference on Coastal Engineering, Hamburg, Germany, 27 August–3 September 1978; pp. 569–587. [Google Scholar]
- Aarninkhof, S.G.; Ruessink, B.G. Video observations and model predictions of depth-induced wave dissipation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2612–2622. [Google Scholar] [CrossRef]
- Aarninkhof, S.; Ruessink, B.; Roelvink, J. Nearshore subtidal bathymetry from time-exposure video images. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Aarninkhof, S.; Wijnberg, K.; Roelvink, D.; Reniers, A. 2DH-quantification of surf zone bathymetry from video. In Proceedings of the 5th International Conference on Coastal Dynamics 2005, Barcelona, Spain, 4–8 April 2005; pp. 1–14. [Google Scholar]
- van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.C.; Catalán, P. Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast. Eng. 2008, 55, 1016–1027. [Google Scholar] [CrossRef]
- Bell, P.S. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng. 1999, 37, 513–527. [Google Scholar] [CrossRef]
- Mancini, S.; Olsen, R.C.; Abileah, R.; Lee, K.R. Automating nearshore bathymetry extraction from wave motion in satellite optical imagery. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII; International Society for Optics and Photonics: Baltimore, MD, USA, 2012; Volume 8390, p. 83900P. [Google Scholar]
- Almar, R.; Bonneton, P.; Senechal, N.; Roelvink, D. Wave celerity from video imaging: A new method. In Proceedings of the Coastal Engineering 2008: 31st International Conference, Hamburg, Germany, 31 August–5 September 2008; World Scientific: Singapore, 2009; pp. 661–673. [Google Scholar]
- Holman, R.; Plant, N.; Holland, T. cBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Ocean. 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
- Bian, X.; Shao, Y.; Zhang, C.; Xie, C.; Tian, W. The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites. ISPRS J. Photogramm. Remote Sens. 2020, 168, 124–130. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Thoumyre, G.; Baba, M.W.; Cesbron, G.; Daly, C.; Garlan, T.; Lifermann, A. Global satellite-based coastal bathymetry from waves. Remote Sens. 2021, 13, 4628. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Ocean. 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Plant, N.G.; Holland, K.T.; Haller, M.C. Ocean wavenumber estimation from wave-resolving time series imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2644–2658. [Google Scholar] [CrossRef]
- Matsuba, Y.; Sato, S. Nearshore bathymetry estimation using UAV. Coast. Eng. J. 2018, 60, 51–59. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. UBathy: A new approach for bathymetric inversion from video imagery. Remote Sens. 2019, 11, 2722. [Google Scholar] [CrossRef] [Green Version]
- Thuan, D.H.; Almar, R.; Marchesiello, P.; Viet, N.T. Video sensing of nearshore bathymetry evolution with error estimate. J. Mar. Sci. Eng. 2019, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Abessolo, G.O.; Almar, R.; Bonou, F.; Bergsma, E. Error proxies in video-based depth inversion: Temporal celerity estimation. J. Coast. Res. 2020, 95, 1101–1105. [Google Scholar] [CrossRef]
- Gawehn, M.; de Vries, S.; Aarninkhof, S. A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sens. 2021, 13, 4742. [Google Scholar] [CrossRef]
- Santos, D.; Abreu, T.; Silva, P.A.; Santos, F.; Baptista, P. Nearshore Bathymetry Retrieval from Wave-Based Inversion for Video Imagery. Remote Sens. 2022, 14, 2155. [Google Scholar] [CrossRef]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, U.; Sánchez-García, E.; Taborda, R. Operational use of surfcam online streaming images for coastal morphodynamic studies. Remote Sens. 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.; Stanley, J. cBathy Bathymetry Estimation in the Mixed Wave-Current Domain of a Tidal Estuary. J. Coast. Res. 2013, 2, 1391–1396. [Google Scholar] [CrossRef]
- Wengrove, M.E.; Henriquez, M.; De Schipper, M.A.; Holman, R.; Stive, M. Monitoring morphology of the Sand Engine leeside using Argus’ cBathy. In Proceedings of the Coastal Dynamics 2013: 7th International Conference on Coastal Dynamics, Arcachon, France, 24–28 June 2013; Bordeaux University: Bordeaux, France, 2013. [Google Scholar]
- Radermacher, M.; Wengrove, M.; van Thiel de Vries, J.; Holman, R. Applicability of video-derived bathymetry estimates to nearshore current model predictions. J. Coast. Res. 2014, 70, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Sembiring, L.; Van Dongeren, A.; Winter, G.; Van Ormondt, M.; Briere, C.; Roelvink, D. Nearshore bathymetry from video and the application to rip current predictions for the Dutch Coast. J. Coast. Res. 2014, 70, 354–359. [Google Scholar] [CrossRef]
- Bergsma, E.; Conley, D.; Davidson, M.; O’Hare, T. Video-based nearshore bathymetry estimation in macro-tidal environments. Mar. Geol. 2016, 374, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Aarnink, J. Bathymetry Mapping Using Drone Imagery. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng. 2018, 136, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, E.W.; Conley, D.C.; Davidson, M.A.; O’Hare, T.J.; Almar, R. Storm event to seasonal evolution of nearshore bathymetry derived from shore-based video imagery. Remote Sens. 2019, 11, 519. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, E.W.; Almar, R.; de Almeida, L.P.M.; Sall, M. On the operational use of UAVs for video-derived bathymetry. Coast. Eng. 2019, 152, 103527. [Google Scholar] [CrossRef]
- Perugini, E.; Soldini, L.; Palmsten, M.L.; Calantoni, J.; Brocchini, M. Linear depth inversion sensitivity to wave viewing angle using synthetic optical video. Coast. Eng. 2019, 152, 103535. [Google Scholar] [CrossRef]
- Bouvier, C.; Balouin, Y.; Castelle, B.; Valentini, N. Video depth inversion at a microtidal site exposed to prevailing low-energy short-period waves and episodic severe storms. J. Coast. Res. 2020, 95, 1021–1026. [Google Scholar] [CrossRef]
- Holman, R.; Bergsma, E.W. Updates to and Performance of the cBathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sens. 2021, 13, 3996. [Google Scholar] [CrossRef]
- Palmsten, M.L.; Brodie, K.L. The Coastal Imaging Research Network (CIRN). Remote Sens. 2022, 14, 453. [Google Scholar] [CrossRef]
- Grilli, S.T. Depth inversion in shallow water based on nonlinear properties of shoaling periodic waves. Coast. Eng. 1998, 35, 185–209. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R. Video-based depth inversion techniques, a method comparison with synthetic cases. Coast. Eng. 2018, 138, 199–209. [Google Scholar] [CrossRef]
- Holland, T.K. Application of the linear dispersion relation with respect to depth inversion and remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2060–2072. [Google Scholar] [CrossRef]
- Catálan, P.A.; Haller, M.C. Remote sensing of breaking wave phase speeds with application to non-linear depth inversions. Coast. Eng. 2008, 55, 93–111. [Google Scholar] [CrossRef]
- Almar, R.; Cienfuegos, R.; Catalán, P.; Birrien, F.; Castelle, B.; Michallet, H. Nearshore bathymetric inversion from video using a fully non-linear Boussinesq wave model. J. Coast. Res. 2011, 64, 20–24. [Google Scholar]
- Jackson, D.; Cooper, J.; Del Rio, L. Geological control of beach morphodynamic state. Mar. Geol. 2005, 216, 297–314. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, O.; Cooper, J.A.G. Applicability of parametric beach morphodynamic state classification on embayed beaches. Mar. Geol. 2013, 346, 153–164. [Google Scholar] [CrossRef]
- McCarroll, R.J.; Brander, R.W.; Turner, I.L.; Van Leeuwen, B. Shoreface storm morphodynamics and mega-rip evolution at an embayed beach: Bondi Beach, NSW, Australia. Cont. Shelf Res. 2016, 116, 74–88. [Google Scholar] [CrossRef]
- Gallop, S.L.; Kennedy, D.M.; Loureiro, C.; Naylor, L.A.; Muñoz-Pérez, J.J.; Jackson, D.W.; Fellowes, T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification. Sci. Total Environ. 2020, 731, 139123. [Google Scholar] [CrossRef]
- Rutten, J.; de Jong, S.M.; Ruessink, G. Accuracy of nearshore bathymetry inverted from X-band radar and optical video data. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1106–1116. [Google Scholar] [CrossRef]
- Short, A.D. Australian beach systems—Nature and distribution. J. Coast. Res. 2006, 22, 11–27. [Google Scholar] [CrossRef]
- Short, A.D. Role of geological inheritance in Australian beach morphodynamics. Coast. Eng. 2010, 57, 92–97. [Google Scholar] [CrossRef]
- González, M.; Medina, R.; Losada, M. Equilibrium beach profile model for perched beaches. Coast. Eng. 1999, 36, 343–357. [Google Scholar] [CrossRef]
- Muñoz-Pérez, J.; Tejedor, L.; Medina, R. Equilibrium beach profile model for reef-protected beaches. J. Coast. Res. 1999, 15, 950–957. [Google Scholar]
- Jackson, D.; Cooper, J. Geological control on beach form: Accommodation space and contemporary dynamics. J. Coast. Res. 2009, 64, 69–72. [Google Scholar]
- Gallop, S.L.; Bosserelle, C.; Eliot, I.; Pattiaratchi, C.B. The influence of limestone reefs on storm erosion and recovery of a perched beach. Cont. Shelf Res. 2012, 47, 16–27. [Google Scholar] [CrossRef]
- Gallop, S.L.; Bosserelle, C.; Eliot, I.; Pattiaratchi, C.B. The influence of coastal reefs on spatial variability in seasonal sand fluxes. Mar. Geol. 2013, 344, 132–143. [Google Scholar] [CrossRef] [Green Version]
- McCarroll, R.J.; Brander, R.W.; Turner, I.L.; Power, H.E.; Mortlock, T.R. Lagrangian observations of circulation on an embayed beach with headland rip currents. Mar. Geol. 2014, 355, 173–188. [Google Scholar] [CrossRef]
- Trenhaile, A. Rocky coasts―Their role as depositional environments. Earth-Sci. Rev. 2016, 159, 1–13. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Mouragues, A.; Bonneton, P.; Castelle, B.; Marieu, V.; Jak McCarroll, R.; Rodriguez-Padilla, I.; Scott, T.; Sous, D. High-Energy Surf Zone Currents and Headland Rips at a Geologically Constrained Mesotidal Beach. J. Geophys. Res. Ocean. 2020, 125, e2020JC016259. [Google Scholar] [CrossRef]
- Huguet, J.R.; Castelle, B.; Marieu, V.; Morichon, D.; de Santiago, I. Shoreline-Sandbar Dynamics at a High-Energy Embayed and Structurally-Engineered Sandy Beach: Anglet, SW France. J. Coast. Res. 2016, 75, 393–397. [Google Scholar] [CrossRef]
- Komar, P.D.; Inman, D.L. Longshore sand transport on beaches. J. Geophys. Res. 1970, 75, 5914–5927. [Google Scholar] [CrossRef]
- Short, A.D. Three dimensional beach-stage model. J. Geol. 1979, 87, 553–571. [Google Scholar] [CrossRef]
- Ruessink, B.; Van Enckevort, I.; Kingston, K.; Davidson, M. Analysis of observed two-and three-dimensional nearshore bar behaviour. Mar. Geol. 2000, 169, 161–183. [Google Scholar] [CrossRef]
- Sénéchal, N.; Gouriou, T.; Castelle, B.; Parisot, J.P.; Capo, S.; Bujan, S.; Howa, H. Morphodynamic response of a meso-to macro-tidal intermediate beach based on a long-term data set. Geomorphology 2009, 107, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Price, T.; Ruessink, B. State dynamics of a double sandbar system. Cont. Shelf Res. 2011, 31, 659–674. [Google Scholar] [CrossRef]
- Sous, D.; Castelle, B.; Mouragues, A.; Bonneton, P. Field Measurements of a High-Energy Headland Deflection Rip Current: Tidal Modulation, Very Low Frequency Pulsation and Vertical Structure. J. Mar. Sci. Eng. 2020, 8, 534. [Google Scholar] [CrossRef]
- Rodríguez-Padilla, I.; Castelle, B.; Marieu, V.; Bonneton, P.; Mouragues, A.; Martins, K.; Morichon, D. Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems. Remote Sens. 2021, 13, 1874. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Padilla, I.; Castelle, B.; Marieu, V.; Morichon, D. A Simple and Efficient Image Stabilization Method for Coastal Monitoring Video Systems. Remote Sens. 2020, 12, 70. [Google Scholar] [CrossRef] [Green Version]
- Holland, K.T.; Holman, R.A.; Lippmann, T.C.; Stanley, J.; Plant, N. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Ocean. Eng. 1997, 22, 81–92. [Google Scholar] [CrossRef]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. 1960. Available online: https://courses.cs.duke.edu/compsci527/cps274/fall11/papers/Kalman60.pdf (accessed on 20 January 2020).
- Péron, C.; Sénéchal, N. Dynamic of a meso to macro-tidal double barred beach: Inner bar response. J. Coast. Res. 2011, 64, 120–124. [Google Scholar]
- Mouragues, A.; Bonneton, P.; Castelle, B.; Marieu, V.; Barrett, A.; Bonneton, N.; Detand, G.; Martins, K.; McCarroll, J.; Morichon, D.; et al. Field Observations of Wave-induced Headland Rips. J. Coast. Res. 2020, 95, 578–582. [Google Scholar] [CrossRef]
- Mouragues, A.; Bonneton, P.; Castelle, B.; Martins, K. Headland Rip Modelling at a Natural Beach under High-Energy Wave Conditions. J. Mar. Sci. Eng. 2021, 9, 1161. [Google Scholar] [CrossRef]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Holman, R.A.; Brodie, K.L.; Spore, N.J. Surf Zone Characterization Using a Small Quadcopter: Technical Issues and Procedures. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2017–2027. [Google Scholar] [CrossRef]
- Harley, M.; Kinsela, M.; Sánchez-García, E.S.; Vos, K. CoastSnap: Crowd-Sourced Shoreline Change Mapping using Smartphones. In AGU Fall Meeting Abstracts; EP52D–26; American Geophysical Union: Washington, DC, USA, 2018; Volume 2018. [Google Scholar]
- Valentini, N.; Balouin, Y.; Bouvier, C. Exploiting the capabilities of surfcam for coastal morphodynamic analysis. J. Coast. Res. 2020, 95, 1333–1338. [Google Scholar] [CrossRef]
- Mole, M.A.; Mortlock, T.R.; Turner, I.L.; Goodwin, I.D.; Splinter, K.D.; Short, A.D. Capitalizing on the surfcam phenomenon: A pilot study in regional-scale shoreline and inshore wave monitoring utilizing existing camera infrastructure. J. Coast. Res. 2013, 65, 1433–1438. [Google Scholar] [CrossRef]
- Dérian, P.; Almar, R. Wavelet-Based Optical Flow Estimation of Instant Surface Currents from Shore-Based and UAV Videos. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5790–5797. [Google Scholar] [CrossRef]
- Anderson, D.; Bak, A.S.; Brodie, K.L.; Cohn, N.; Holman, R.A.; Stanley, J. Quantifying Optically Derived Two-Dimensional Wave-Averaged Currents in the Surf Zone. Remote Sens. 2021, 13, 690. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; De Vries, J.V.T.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- McCarroll, R.J.; Brander, R.W.; Scott, T.; Castelle, B. Bathymetric controls on rotational surfzone currents. J. Geophys. Res. Earth Surf. 2018, 123, 1295–1316. [Google Scholar] [CrossRef]
Date | (m) | (s) | Bias (m) | RMSE (m) | Tide (m) | Location | # Surveys | Reference |
---|---|---|---|---|---|---|---|---|
Oct/2013 to Feb/2015 | <5.40 | <18.6 | - | - | 7 | Porthtowan, Cornwall, UK | 16 | Bergsma et al. [39] |
Sep/2015 to Sep/2016 | 0.30–4.30 | 4–18 | −0.26 | 0.75 | <2 | Duck, NC, USA | 8 | Brodie et al. [38] |
2009–2011 | 0.25–2.00 | - | 0.19 | 0.51 | 0.98 | Duck, NC, USA | 16 | Holman et al. [19] |
Mar/2013 to Mar/2014 | <1.65 | - | 0.59 | 0.79 | - | SandEngine, The Netherlands | 6 | Rutten et al. [54] |
Mar/2013 to Mar/2014 | <1.65 | - | −0.01 | 0.34 | - | SandEngine, The Netherlands | 6 | Rutten et al. [54] |
Mar/2013 to Mar/2014 | <1.65 | - | −0.92 | 0.34 | - | SandEngine, The Netherlands | 6 | Rutten et al. [54] |
4–13/Dec/2016 | 1.52 | 9.2 | - | 1.28 | 0.4–1.6 | Saint Louis, Senegal | 1 | Bergsma et al. [40] |
13/Jul/2013 | - | 7.10 | −0.41 | 0.56 | >3 | Agate Beach, OR, USA | 1 | Holman et al. [19] |
17/May/2012 | 1.19 | 5–7 | 0 | 0.52 | - | New River Inlet, NC, USA | 1 | Holman and Stanley [32] |
10/Apr/2014 | 1.16 | 10.5 | - | 1.06 | 2.78 | Porthtowan, Cornwall, UK | 1 | Bergsma et al. [36] |
9–17/Sep/2010 | 0.50–1.00 | - | −0.26 | 0.49 | - | Duck, NC, USA | 1 | Honegger et al. [6] |
Jul-Aug/2013 | - | - | −0.11 | 0.35 | - | Benson Beach, WA, USA | 1 | Honegger et al. [6] |
Jun/2013 | - | - | −0.16 | 0.45 | - | Egmond aan Zee, The Netherlands | 1 | Sembiring et al. [35] |
Feb/2017 | 0.70–0.97 | - | - | 0.37–0.87 | - | Scheveningen, The Netherlands | 1 | Aarnink [37] |
20/Feb/2013 | 0.64 | 5.8 | −0.18 | 1.01 | 1.4–1.9 | Kijkduin, The Netherlands | 1 | Wengrove et al. [33] |
17/Abr/2014 | 0.52 | 10.4 | - | 2.05 | 6.03 | Porthtowan, Cornwall, UK | 1 | Bergsma et al. [36] |
Jan-Mar/2018 | 0.52 | 8 | 0.01 | 0.38 | 0.2 | Lido of Sète, France | 1 | Bouvier et al. [42] |
Jul-Dec/2018 | 0.52 | 8 | 0.02 | 0.37 | 0.2 | Lido of Sète, France | 1 | Bouvier et al. [42] |
1–4/Jul/2013 | <0.50 | - | - | 0.48–0.66 | - | SandEngine, The Netherlands | 1 | Radermacher et al. [34] |
17/Feb/2013 | 0.22 | 8.5 | −0.50 | 1.27 | 1.4–1.9 | Kijkduin, The Netherlands | 1 | Wengrove et al. [33] |
Description | Value |
---|---|
Pixel cross-shore spacing () | 5 m |
Pixel alongshore spacing () | 10 m |
Cross-shore depth analysis spacing () | 10 m |
Alongshore depth analysis spacing () | 25 m |
Cross-shore analysis smoothing scale () | 30 m |
Alongshore analysis smoothing scale () | 75 m |
Temporal resolution () | 1 s |
Record length of each stack () | 1024 s |
Number of stacks () | 330 |
Minimum acceptable depth () | 0.25 m |
Analysis frequency bins () | |
Number of frequency bins to retain () | 4 |
9/Oct/2018 | 15/Oct/2018 | 22/Oct/2018 | 26/Oct/2018 | 30/Oct/2018 | |
---|---|---|---|---|---|
Time (GMT) | 11:00 | 13:00 | 10:00 | 11:30 | 14:00 |
Configuration | Deflection | Shadowed | Shore-normal | Deflection | Deflection |
(°) | 11 | −9 | −1 | 14 | 8 |
(kW/m) | 2.2 | −3.2 | −0.1 | 0.8 | 0.2 |
(m) | 1.3 | 1.9 | 1.1 | 0.8 | 0.5 |
(s) | 13 | 13 | 12 | 11 | 6 |
Tide (m) | −1.2 | −0.8 | −0.8 | −1.5 | −1.1 |
Beach state | LTT | LTT | LTT–TBR | eTBR | TBR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Padilla, I.; Castelle, B.; Marieu, V.; Morichon, D. Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events. Remote Sens. 2022, 14, 3850. https://doi.org/10.3390/rs14163850
Rodríguez-Padilla I, Castelle B, Marieu V, Morichon D. Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events. Remote Sensing. 2022; 14(16):3850. https://doi.org/10.3390/rs14163850
Chicago/Turabian StyleRodríguez-Padilla, Isaac, Bruno Castelle, Vincent Marieu, and Denis Morichon. 2022. "Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events" Remote Sensing 14, no. 16: 3850. https://doi.org/10.3390/rs14163850
APA StyleRodríguez-Padilla, I., Castelle, B., Marieu, V., & Morichon, D. (2022). Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events. Remote Sensing, 14(16), 3850. https://doi.org/10.3390/rs14163850