Classification of Precipitation Types Based on Machine Learning Using Dual-Polarization Radar Measurements and Thermodynamic Fields
Abstract
:1. Introduction
2. Response and Predictors
2.1. Precipitation Type
2.2. Dual-Polarization Radar Data
2.3. Thermodynamic Field Data
3. Classification Methods of Precipitation Types
3.1. Machine Learning Methods
3.2. Predictor Selection
3.3. Hyperparameter Tuning
3.4. Validation
4. Verification of Precipitation Type Classification
5. Application to the Operational Radar Network
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Optimized Matsuo Scheme
Step | Criteria | Precipitation Type |
---|---|---|
1 | Thick1000–850 1281 | SN |
1281 Thick1000–850 1297 | (Proceed to step 2) | |
1297 Thick1000–850 | RN | |
2 | RH ≥ 75 and Ts ≤ 0.9 and RH < (−100/13) × Ts + 102.5 | SN |
Ts > 0.9 and RH < (−100/13) × Ts + 89.5 or Ts ≤ 0.9 and RH < 75 | ||
RH ≥ (−100/13) × Ts + 89.5 and RH < (−100/13) × Ts + 100 and RH < (−12) × Ts + 120 and Ts > 0.9 | MIX | |
Ts > 0.9 and RH ≥ (−100/13) × Ts + 100 and RH < (−12) × Ts + 120 or Ts ≤ 0.9 and RH ≥ (−100/13) × Ts + 102.5 | ||
RH ≥ (−12) × Ts + 120 | RN |
References
- Norrman, J.; Eriksson, M.; Lindqvist, S. Relationships between Road Slipperiness, Traffic Accident Risk and Winter Road Maintenance Activity. Clim. Res. 2000, 15, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Harpold, A.A.; Kaplan, M.L.; Klos, P.Z.; Link, T.; McNamara, J.P.; Rajagopal, S.; Schumer, R.; Steele, C.M. Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs. Hydrol. Earth Syst. Sci. 2017, 21, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Habets, F.; Boone, A.; Champeaux, J.L.; Etchevers, P.; Franchistéguy, L.; Leblois, E.; Ledoux, E.; Le Moigne, P.; Martin, E.; Morel, S.; et al. The SAFRAN-ISBA-MODCOU Hydrometeorological Model Applied over France. J. Geophys. Res. Atmos. 2008, 113, D06113. [Google Scholar] [CrossRef] [Green Version]
- Zhong, K.; Zheng, F.; Xu, X.; Qin, C. Discriminating the Precipitation Phase Based on Different Temperature Thresholds in the Songhua River Basin, China. Atmos. Res. 2018, 205, 48–59. [Google Scholar] [CrossRef]
- Ding, B.; Yang, K.; Qin, J.; Wang, L.; Chen, Y.; He, X. The Dependence of Precipitation Types on Surface Elevation and Meteorological Conditions and Its Parameterization. J. Hydrol. 2014, 513, 154–163. [Google Scholar] [CrossRef]
- Sims, E.M.; Liu, G. A Parameterization of the Probability of Snow–Rain Transition. J. Hydrometeorol. 2015, 16, 1466–1477. [Google Scholar] [CrossRef]
- Behrangi, A.; Yin, X.; Rajagopal, S.; Stampoulis, D.; Ye, H. On Distinguishing Snowfall from Rainfall Using Near-Surface Atmospheric Information: Comparative Analysis, Uncertainties and Hydrologic Importance. Q. J. R. Meteorol. Soc. 2018, 144, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Broxton, P.; Fang, Y.; Behrangi, A.; Barlage, M.; Zeng, X.; Niu, G.Y. A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophys. Res. Lett. 2019, 46, 13825–13835. [Google Scholar] [CrossRef]
- Rogers, R.R.; Yau, M.K. A Short Course in Cloud Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1996; ISBN 0-08-057094-1. [Google Scholar]
- Thériault, J.M.; Stewart, R.E.; Henson, W. On the Dependence of Winter Precipitation Types on Temperature, Precipitation Rate, and Associated Features. J. Appl. Meteorol. Clim. 2010, 49, 1429–1442. [Google Scholar] [CrossRef] [Green Version]
- Froidurot, S.; Zin, I.; Hingray, B.; Gautheron, A. Sensitivity of Precipitation Phase over the Swiss Alps to Different Meteorological Variables. J. Hydrometeorol. 2014, 15, 685–696. [Google Scholar] [CrossRef]
- Keeter, K.K.; Cline, J.W. The Objective Use of Observed and Forecast Thickness Values to Predict Precipitation Type in North Carolina. Weather Forecast. 1991, 6, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Heppner, P.O.G. Snow versus Rain: Looking beyond the “Magic” Numbers. Weather Forecast. 1992, 7, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Bourgouin, P. A Method to Determine Precipitation Types. Weather Forecast. 2000, 15, 583–592. [Google Scholar] [CrossRef]
- Lee, S.-M.; Han, S.-U.; Won, H.Y.; Ha, J.-C.; Lee, Y.H.; Lee, J.-H.; Park, J.-C. A Method for the Discrimination of Precipitation Type Using Thickness and Improved Matsuo’s Scheme over South Korea. Atmosphere 2014, 24, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Sasyo, Y.; Sato, Y. Relationship between Types of Precipitation on the Ground and Surface Meteorological Elements. J. Meteorol. Soc. Jpn. Ser. II 1981, 59, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Reeves, H.D.; Elmore, K.L.; Ryzhkov, A.; Schuur, T.; Krause, J. Sources of Uncertainty in Precipitation-Type Forecasting. Weather Forecast. 2014, 29, 936–953. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-62384-1. [Google Scholar]
- Kumjian, M.R. Principles and Applications of Dual-Polarization Weather Radar. Part II: Warm and Cold Season Applications. J. Oper. Meteorol. 2013, 1, 243–264. [Google Scholar] [CrossRef]
- Park, H.S.; Ryzhkov, A.V.; Zrnić, D.S.; Kim, K.E. The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Al-Sakka, H.; Boumahmoud, A.-A.; Fradon, B.; Frasier, S.J.; Tabary, P. A New Fuzzy Logic Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars. J. Appl. Meteorol. Clim. 2013, 52, 2328–2344. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A.; Lim, S.; Chandrasekar, V.; Thurai, M. A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. J. Appl. Meteorol. Clim. 2013, 52, 2162–2186. [Google Scholar] [CrossRef]
- Marzano, F.S.; Scaranari, D.; Montopoli, M.; Vulpiani, G. Supervised Classification and Estimation of Hydrometeors from C-Band Dual-Polarized Radars: A Bayesian Approach. IEEE Trans. Geosci. Remote Sens. 2008, 46, 85–98. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, K.; Zhang, G.; Chen, G.; Huang, H.; Chen, H. A Bayesian Hydrometeor Classification Algorithm for C-Band Polarimetric Radar. Remote Sens. 2019, 11, 1884. [Google Scholar] [CrossRef] [Green Version]
- Vivekanandan, J.; Ellis, S.M.; Oye, R.; Zrnic, D.S.; Ryzhkov, A.V.; Straka, J. Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements. Bull. Am. Meteor. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations. J. Appl. Meteor. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Rico-Ramirez, M.A.; Cluckie, I.D.; Han, D. Correction of the Bright Band Using Dual-Polarisation Radar. Atmos. Sci. Lett. 2005, 6, 40–46. [Google Scholar] [CrossRef]
- Schuur, T.J.; Park, H.-S.; Ryzhkov, A.V.; Reeves, H.D. Classification of Precipitation Types during Transitional Winter Weather Using the RUC Model and Polarimetric Radar Retrievals. J. Appl. Meteorol. Clim. 2012, 51, 763–779. [Google Scholar] [CrossRef]
- Steinert, J.; Tracksdorf, P.; Heizenreder, D. Hymec: Surface Precipitation Type Estimation at the German Weather Service. Weather Forecast. 2021, 36, 1611–1627. [Google Scholar] [CrossRef]
- McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Jergensen, G.E.; McGovern, A.; Lagerquist, R.; Smith, T. Classifying Convective Storms Using Machine Learning. Weather Forecast. 2020, 35, 537–559. [Google Scholar] [CrossRef]
- Shin, K.; Song, J.J.; Bang, W.; Lee, G. Quantitative Precipitation Estimates Using Machine Learning Approaches with Operational Dual-Polarization Radar Data. Remote Sens. 2021, 13, 694. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, Y.H. An Improved Forecast of Precipitation Type Using Correlation-Based Feature Selection and Multinomial Logistic Regression. Atmos. Res. 2020, 240, 104928. [Google Scholar] [CrossRef]
- Seo, B.C. A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data. Atmosphere 2020, 11, 701. [Google Scholar] [CrossRef]
- Półrolniczak, M.; Kolendowicz, L.; Czernecki, B.; Taszarek, M.; Tóth, G. Determination of Surface Precipitation Type Based on the Data Fusion Approach. Adv. Atmos. Sci. 2021, 38, 387–399. [Google Scholar] [CrossRef]
- Pickering, B.S.; Best, S.; Dufton, D.; Lukach, M.; Lyth, D.; Neely, R.R. Improving Observations of Precipitation Type at the Surface: A 5-Year Verification of a Radar-Derived Product from the United Kingdom’s Met Office. J. Hydrometeorol. 2021, 22, 19. [Google Scholar] [CrossRef]
- Korea Meteorological Administration Manual of Surface Weather Observation. 2016. Available online: https://book.kma.go.kr/viewer/MediaViewer.ax?cid=33393&rid=5&moi=5241 (accessed on 28 July 2022).
- Lee, J.E.; Jung, S.H.; Kwon, S. Characteristics of the Bright Band Based on Quasi-Vertical Profiles of Polarimetric Observations from an s-Band Weather Radar Network. Remote Sens. 2020, 12, 4061. [Google Scholar] [CrossRef]
- Lee, J.-E.; Kwon, S.; Jung, S.-H. Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network. Remote Sens. 2021, 13, 2936. [Google Scholar] [CrossRef]
- Oh, Y.A.; Kim, H.L.; Suk, M.K. Clutter Elimination Algorithm for Non-Precipitation Echo of Radar Data Considering Meteorological and Observational Properties in Polarimetric Measurements. Remote Sens. 2020, 12, 3790. [Google Scholar] [CrossRef]
- Kim, M.; Lee, K.; Lee, Y.H. Visibility Data Assimilation and Prediction Using an Observation Network in South Korea. Pure Appl. Geophys. 2020, 177, 1125–1141. [Google Scholar] [CrossRef]
- Stull, R. Wet-Bulb Temperature from Relative Humidity and Air Temperature. J. Appl. Meteorol. Clim. 2011, 50, 2267–2269. [Google Scholar] [CrossRef] [Green Version]
- May, R.M.; Arms, S.C.; Marsh, P.; Bruning, E.; Leeman, J.R.; Goebbert, K.; Thielen, J.E.; Bruick, Z.S.; Camron, M.D. MetPy: A Python Package for Meteorological Data. Unidata 2022. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Routledge: New York, NY, USA, 1984. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- McGovern, A.; Lagerquist, R.; Gagne, D.J.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Am. Meteorol. Soc. 2019, 100, 2175–2199. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive Partitioning and Regression Trees. 2010. Available online: https://cran.r-project.org/web/packages/rpart/ (accessed on 28 July 2022).
- Kumjian, M.R.; Ryzhkov, A.V. The Impact of Evaporation on Polarimetric Characteristics of Rain: Theoretical Model and Practical Implications. J. Appl. Meteorol. Clim. 2010, 49, 1247–1267. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Evaristo, R.; Troemel, S.; Saavedra, P.; Simmer, C.; Ryzhkov, A. Radar Observation of Evaporation and Implications for Quantitative Precipitation and Cooling Rate Estimation. J. Atmos. Ocean. Technol. 2016, 33, 1779–1792. [Google Scholar] [CrossRef]
- Carlin, J.T.; Reeves, H.D.; Ryzhkov, A.V. Polarimetric Observations and Simulations of Sublimating Snow: Implications for Nowcasting. J. Appl. Meteorol. Clim. 2021, 60, 1035–1054. [Google Scholar] [CrossRef]
- Song, J.J.; Innerst, M.; Shin, K.; Ye, B.; Kim, M.; Yeom, D.; Lee, G. Estimation of Precipitation Area Using S-Band Dual-Polarization Radar Measurements. Remote Sens. 2021, 13, 2039. [Google Scholar] [CrossRef]
- Martinaitis, S.M.; Grams, H.M.; Langston, C.; Zhang, J.; Howard, K. A Real-Time Evaporation Correction Scheme for Radar-Derived Mosaicked Precipitation Estimations. J. Hydrometeorol. 2018, 19, 87–111. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Khain, A.P. Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling. J. Appl. Meteorol. Clim. 2013, 52, 2849–2870. [Google Scholar] [CrossRef]
- Trömel, S.; Ryzhkov, A.V.; Zhang, P.; Simmer, C. Investigations of Backscatter Differential Phase in the Melting Layer. J. Appl. Meteorol. Clim. 2014, 53, 2344–2359. [Google Scholar] [CrossRef]
- Tobin, D.M.; Kumjian, M.R. Polarimetric Radar and Surface-Based Precipitation-Type Observations of Ice Pellet to Freezing Rain Transitions. Weather Forecast. 2017, 32, 2065–2082. [Google Scholar] [CrossRef]
- Reeves, H.D.; Ryzhkov, A.V.; Krause, J. Discrimination between Winter Precipitation Types Based on Spectral-Bin Microphysical Modeling. J. Appl. Meteorol. Clim. 2016, 55, 1747–1761. [Google Scholar] [CrossRef]
- McCray, C.D.; Atallah, E.H.; Gyakum, J.R. Long-Duration Freezing Rain Events over North America: Regional Climatology and Thermodynamic Evolution. Weather Forecast. 2019, 34, 665–681. [Google Scholar] [CrossRef]
- Tripp, D.D.; Martin, E.R.; Reeves, H.D. Applications of Uncrewed Aerial Vehicles (UAVs) in Winter Precipitation-Type Forecasts. J. Appl. Meteorol. Clim. 2021, 60, 361–375. [Google Scholar] [CrossRef]
- Lachapelle, M.; Thériault, J.M. Characteristics of Precipitation Particles and Microphysical Processes during the 11–12 January 2020 Ice Pellet Storm in the Montréal Area, Québec, Canada. Mon. Weather Rev. 2022, 150, 1043–1059. [Google Scholar] [CrossRef]
- Punge, H.J.; Kunz, M. Hail Observations and Hailstorm Characteristics in Europe: A Review. Atmos. Res. 2016, 176–177, 159–184. [Google Scholar] [CrossRef]
- Allen, J.T.; Giammanco, I.M.; Kumjian, M.R.; Punge, H.J.; Zhang, Q.; Groenemeijer, P.; Kunz, M.; Ortega, K. Understanding Hail in the Earth System. Rev. Geophys. 2020, 58, e2019RG000665. [Google Scholar] [CrossRef] [Green Version]
No. | Date | Configuration | No. | Date | Configuration |
---|---|---|---|---|---|
1 | 13 December 2018 | Training and Validation | 12 | 15 February 2019 | Training and Validation |
2 | 16 December 2018 | 13 | 16 February 2019 | ||
3 | 23 December 2018 | 14 | 18 February 2019 | ||
4 | 27 December 2018 | 15 | 19 February 2019 | ||
5 | 28 December 2018 | 16 | 27 February 2019 | ||
6 | 29 December 2018 | 17 | 25 January 2022 | Application | |
7 | 12 January 2019 | 18 | 15 February 2022 | ||
8 | 19 January 2019 | 19 | 19 February 2022 | ||
9 | 31 January 2019 | 20 | 1 March 2022 | ||
10 | 3 February 2019 | 21 | 19 March 2022 | ||
11 | 7 February 2019 | - | - | - |
No Precipitation (CLR) | Rain (RA) | Mixed (MIX) | Snow (SN) | Overall | |
---|---|---|---|---|---|
Training set | 3376 | 3721 | 128 | 1467 | 8692 |
Validation set | 1425 | 1572 | 45 | 633 | 3675 |
Total | 4801 | 5293 | 173 | 2100 | 12,367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.; Kim, K.; Song, J.J.; Lee, G. Classification of Precipitation Types Based on Machine Learning Using Dual-Polarization Radar Measurements and Thermodynamic Fields. Remote Sens. 2022, 14, 3820. https://doi.org/10.3390/rs14153820
Shin K, Kim K, Song JJ, Lee G. Classification of Precipitation Types Based on Machine Learning Using Dual-Polarization Radar Measurements and Thermodynamic Fields. Remote Sensing. 2022; 14(15):3820. https://doi.org/10.3390/rs14153820
Chicago/Turabian StyleShin, Kyuhee, Kwonil Kim, Joon Jin Song, and GyuWon Lee. 2022. "Classification of Precipitation Types Based on Machine Learning Using Dual-Polarization Radar Measurements and Thermodynamic Fields" Remote Sensing 14, no. 15: 3820. https://doi.org/10.3390/rs14153820
APA StyleShin, K., Kim, K., Song, J. J., & Lee, G. (2022). Classification of Precipitation Types Based on Machine Learning Using Dual-Polarization Radar Measurements and Thermodynamic Fields. Remote Sensing, 14(15), 3820. https://doi.org/10.3390/rs14153820