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Abstract: An accurate classification of the precipitation type is important for forecasters, particularly
in the winter season. We explored the capability of three supervised machine learning (ML) methods
(decision tree, random forest, and support vector machine) to determine ground precipitation types
(no precipitation, rain, mixed, and snow) for winter precipitation. We provided information on the
particle characteristics within a radar sampling volume and the environmental condition to the ML
model with the simultaneous use of polarimetric radar variables and thermodynamic variables. The
ML algorithms were optimized using predictor selection and hyperparameter tuning in order to
maximize the computational efficiency and accuracy. The random forest (RF) had the highest skill
scores in all precipitation types and outperformed the operational scheme. The spatial distribution of
the precipitation type from the RF model showed a good agreement with the surface observation.
As a result, RF is recommended for the real-time precipitation type classification due to its easy
implementation, computational efficiency, and satisfactory accuracy. In addition to the validation,
this study confirmed the strong dependence of precipitation type on wet-bulb temperature and a
1000–850 hPa layer thickness. The results also suggested that the base heights of the radar echo are
useful in discriminating non-precipitating area.

Keywords: precipitation type; machine learning; dual-polarization radar; thermodynamic field

1. Introduction

Precipitation types are a major factor in weather forecasting as they affect transporta-
tion, agriculture, and industry as a whole [1,2]. Accurate discrimination among winter
precipitation types (e.g., rain, snow, wet snow, and freezing rain) plays a key role in winter
precipitation forecasting. An unpredicted phase transition from rain to snow, caused by
small changes in the thermodynamic environment, can result in disruptions in the road
and air traffic and create hazardous walking conditions. The accurate determination of
surface precipitation type is also important to reduce uncertainty in hydrological models.
However, the significant sensitivity of precipitation type to the variability in the atmo-
spheric condition is one of the major challenges in the accurate classification of the type at
the surface.

Several meteorological variables control the winter precipitation type. Air temperature
(Ts) is the most fundamental variable for classifying precipitation types [3,4]. In addition to
the Ts, wet-bulb temperature (Tw) is known as a more critical variable than Ts [5–8] because
it accounts for the cooling effects by surface evaporation [9]. Thus, Tw generally improves
the classification of the precipitation type. Relative humidity (RH) measures the amount of
moisture and affects particle size distribution [5,10,11]. The thickness of the 1000–850 hPa
layer (Thick1000–850) is proportional to the mean temperature of the layer. The thickness
was also considered as a key variable in the discrimination between rain and snow [12–15].

Remote Sens. 2022, 14, 3820. https://doi.org/10.3390/rs14153820 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1182-6751
https://orcid.org/0000-0001-8684-7277
https://orcid.org/0000-0002-1385-4924
https://doi.org/10.3390/rs14153820
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153820?type=check_update&version=1


Remote Sens. 2022, 14, 3820 2 of 17

The low-level vertical temperature lapse rate (γlow) explains the conditions in which the
particles fall [6].

Based on these fundamental variables, the critical RHs as a function of Ts for the
judgment of the precipitation type were obtained by statistical analysis [16] (so-called
Matsuo scheme). The optimized Matsuo scheme [15], which is suitable for the Korean
climate, was utilized in the Korea Meteorological Administration (KMA) operationally to
support the decision making of the forecasters. In practice, the scheme is applied using
the variables of the numerical weather prediction (NWP) models. Thus, the accuracy of
the classification of precipitation types strongly depends on that of the NWP [17]. A low
spatiotemporal resolution also causes the low predictability of the scheme.

Aside from the thermodynamical parameters, the advent of a dual-polarization radar
network offers an opportunity to utilize dual-polarization variables for accurate precipita-
tion type classification at a high spatiotemporal resolution. The dual-polarization variables
include differential reflectivity (ZDR, dB), specific differential phase (KDP, ◦ km−1), and the
co-polar correlation coefficient (ρHV). In the perspective of precipitation classification, ZDR
and KDP are useful to determine the particle shape, while ρHV is effective in determining the
melting layer [18,19]. A hydrometeor classification algorithm using polarimetric variables
was applied using a fuzzy-logic approach [20–22], a Bayesian approach [23,24], and so
on. In particular, the fuzzy-logic algorithms were utilized for operational use and their
classifications over the past 20 years are displayed in realtime in several national radar
networks [25–28] to the present. Although the dual-polarization variables can provide
detailed hydrometeor classification at the high spatiotemporal resolution, the absence of
information (particularly thermodynamical information) below the radar beam height
leads to large uncertainty in determining the precipitation type at the surface.

The synergistic use of polarimetric variables and thermodynamic variables is beneficial
in the accurate classification. Schuur et al. [29] first introduced an algorithm that combines
S-band polarimetric radar observations and Tw obtained from the NWP. Based on the
defined Boolean decision tree, the algorithm classifies the winter precipitation phases into
seven classes (crystals, dry snow, wet snow, ice pellets/sleet, freezing rain, a mix of freezing
rain and ice pellets, and rain). They generated background classification from NWP and
updated it using radar data. The validation with the data from an automated surface
observing system (ASOS) showed an encouraging performance. Recently, Steinert et al. [30]
determined the hydrometeor type at the radar beam height using a fuzzy-logic hydrometeor
classification algorithm and took into account the melting process below the beam height
using the NWP product based on a Boolean decision tree. Despite these efforts, the decision
tree is still less objective and less flexible due to empirical critical thresholds (e.g., reflectivity,
Tw, melting layer height).

Machine learning (ML) perfectly fits this particular need for modeling the complex
relationship between the precipitation type and the various factors. It allows us to deal
with multidimensional and complex nonlinear problems without any distributional and
modeling assumptions. For these benefits, ML was widely used in the atmospheric sci-
ences [31–33]. Using the NWP-driven variables, a multinomial logistic regression (MLR)
model showed a 15% improvement in accuracy compared to the NWP forecast and outper-
formed the optimized Matsuo scheme [34]. Seo [35] utilized both thermodynamic variables
and polarimetric variables and performed testing with the following six ML models: k-
nearest neighbors, logistic regression, support vector machine (SVM), decision tree (DT),
random forest (RF), and multi-layer perceptron. As a result, RF showed the best score
and performed better than the operational method. Półrolniczak et al. [36] implemented
the RF using the surface synoptic observation, NWP reanalysis data, and radar data in
the similar way. However, there are opportunities to improve the performance through
the optimization of each ML model. To efficiently implement the ML model in realtime
operation, it is necessary to optimize and search for a suitable ML model through rigorous
evaluation to ensure both accuracy and computational efficiency in realtime operation.
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In this paper, we explored the capability of the optimized ML to classify the precip-
itation types using both polarimetric and thermodynamic variables. Three widely used
supervised ML methods (DT, RF, and SVM) were tested. The optimization of the ML algo-
rithms was performed by (1) selecting predictors through variable importance analysis and
(2) tuning each ML model with the best hyperparameters. The ML models were evaluated
using the hold-out validation. The best ML model was compared with the schemes in
operation and applied to the Korean S-band operational radar network.

2. Response and Predictors

To establish the ML model, it is necessary to properly select the response variables
and predictors. In our configuration, the response variable is the precipitation type, and
the predictors are both polarimetric variables and thermodynamic variables.

2.1. Precipitation Type

Trained observers at KMA observed the present weather, which was recorded and
assigned to one of the weather codes. The weather codes were reported at 23 stations (blue
circles in Figure 1). While automatic instruments (i.e., disdrometers and present weather
sensors) provided weather codes and could be used for training and validation [37], this
record was deemed the most reliable source of precipitation in Korea as it was collected by
a trained observer. Each observer should follow the guidelines in the observation manual
of KMA to ensure the consistency of the quality from site to site.
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shading) and surface station for present weather observation (blue open circle).

The weather code consists of hydrometeor, lithometeor, photometeor, and electrome-
teor phenomena with 143 codes [38]. Among the codes, we selected 3 codes for rain (RA;
rain, drizzle, and rain shower), 3 codes for snow (SN; snow, snow shower, and graupel),
and 2 codes for mixed type (MIX; sleet and sleet shower). The mixed type here was defined
as the co-presence of liquid (rain) and solid (snow) phases. The hail was excluded because
it had never been reported in the training dataset and thus training was not possible. The
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other codes were considered as no precipitation (CLR), indicating the absence of precipitat-
ing particles at the surface. As a result, we divided the present weather codes reported by
trained people into the following four types: rain (RA), snow (SN), mixed (MIX), and no
precipitation (CLR).

2.2. Dual-Polarization Radar Data

The polarimetric radar variables were obtained from the radar network of 10 S-band
radars [39,40] operated by the weather radar center (WRC) of the KMA. The variables
include ZH, ZDR, KDP, and ρHV. The quality of radar variables was controlled by a KMA
algorithm, named the clutter elimination algorithm for the non-precipitation echo of radar
data (CLEANER) [41]. The CLEANER algorithm features the efficient removal of a non-
precipitation echo and allowed us to use reliable data during training.

A national 3D radar mosaic product of each radar variable has a horizontal resolution
of 500 m and a vertical resolution of 50 m. To use the collocated variables as input data for
ML, if any of the radar variables is missing, we considered the corresponding grid point
as missing. Thus, we used data from grid points where all variables were valid. Then, we
took the value of each variable at the lowest height where meteorological echo appeared
for each column (i.e., the height of echo base) to reflect the characteristics of radar variables
closest to the surface. We also included the height of the echo base as the predictor referred
to as HGT.

Note that one of the radars (located in the most northeast in Figure 1) was replaced by a
polarimetric radar from the Doppler radar in November 2019. Therefore, before November
2019, ZDR, KDP, and ρHV were mosaicked by 9 radars excluding this radar, whereas ZH
was mosaicked by 10 radars.

2.3. Thermodynamic Field Data

The three-dimensional thermodynamic fields, which are operationally produced by
KMA every 5 min, were used to retrieve thermodynamic predictors. The horizontal
resolution is 4 km, and the vertical resolution is 100 m at 0–2 km height and 200 m at
2–10 km height. The fields are based on the product from the very-short-range forecast
system of KMA and updated by multiquadric interpolation of observations [39,42]. The
available variables include dry-bulb temperature (T), dew point temperature (Td), and
pressure. The predictors were obtained from these three variables.

This study took into account the measurements at the surface and the vertical profile
of the variables. In regard to the variables at the surface, we computed Ts and Tw. Ts
(temperature nearest to the surface) was obtained from the T at the lowest level. Tw was
calculated using Ts and RH via Stull [43], where RH was calculated from Ts and Td at
the lowest height using the “MetPy” package [44] in Python. Variables derived from the
atmospheric profiles include Thick1000–850 and γlow. Thick1000–850 was computed using
the hypsometric equation for the layer 1000–850 hPa. We used the virtual temperature at
925 hPa for computational purposes, although the one in the equation is the layer-mean
virtual temperature. Thus, Thick1000–850 (gpm) is expressed as

Thick1000–850 =
RdTv

g
ln

P1

P2
(1)

where Rd is the gas constant of dry air (287 J kg−1 K−1), g is the gravitational acceleration
(9.8 m s−2), and P1 and P2 are 1000 hPa and 850 hPa, respectively. Tv is the virtual
temperature (K) at 925 hPa.

The γlow (K km−1) was calculated from the difference of T in the lowest 500 m
height [6] as

γlow = −∆T
∆z

= −T500m − Ts

0.5
(2)

where T500m is the temperature at 500 m height.
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Since the horizontal resolution of dual-polarization radar measurements and thermo-
dynamic fields are not consistent, linear interpolation was applied to the three-dimensional
analysis fields prior to the computation of predictors to make the grid size the same as
the dual-polarization radar data. A total of 12,367 10 min data during the winter season
2018–2019 was used for training and validation. A total of 16 days was selected including
3 days for rain-dominant, 9 days for the co-occurrence of rain, mix, and snow, and 4 days
for snow-dominant cases (Table 1). In addition to the dataset for training and validation, the
5 independent cases in 2022 were selected for the application in the operational radar data.

Table 1. List of precipitation events for training, validation, and application.

No. Date Configuration No. Date Configuration

1 13 December 2018

Training
and

Validation

12 15 February 2019
Training

and
Validation

2 16 December 2018 13 16 February 2019
3 23 December 2018 14 18 February 2019
4 27 December 2018 15 19 February 2019
5 28 December 2018 16 27 February 2019

6 29 December 2018 17 25 January 2022

Application
7 12 January 2019 18 15 February 2022
8 19 January 2019 19 19 February 2022
9 31 January 2019 20 1 March 2022
10 3 February 2019 21 19 March 2022

11 7 February 2019 - - -

3. Classification Methods of Precipitation Types

Figure 2 illustrates the overall procedures of the construction of our final ML model.
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3.1. Machine Learning Methods

This study examines the effectiveness of supervised-ML methods in classifying the
winter precipitation types. We considered the following three widely used classifiers: DT,
RF, and SVM. The DT method is a building block of all tree-based methods. It summarizes
splitting conditions used to segment the predictor region in a tree shape [45]. The DT
algorithm starts by dividing the tree recursively from the top of the tree as the root node.
The best predictor for splitting was selected at each node and the data were divided into
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the sub-node called the intermediate node. To perform this splitting, the algorithm applies
an empirical rule to decide the criteria based on the lowest impurity measure, such as
the Gini index, the information gain, or the gain ratio. In this study, the Gini index was
chosen for splitting nodes. The node where there is no more data to split is known as the
terminal node.

RF is an ensemble model and more robust to noise in training data [46]. It consists of
a number of DTs built with bootstrap samples which were generated by sampling with
replacement. Each DT was grown individually using the randomly selected subset of
predictors. It can reduce the variance of RF by decorrelating DTs. The final prediction
was obtained by pooling predictions from all DTs. DT and RF are known as a “white box”
model, which enables the interpretation of the model [47].

The SVM generally finds a hyperplane that maximizes separating the data points to
their potential classes [48]. The hyperplane is defined as the boundary that divides the
classes of input data. The points that are closest to the hyperplane and used to calculate
the margin are called support vectors. The technique measures the distances between a
new observation and each support vector with a selected kernel function and makes its
prediction. In this study, we explored several kernel functions (linear, polynomial, and
radial basis function) and then selected the polynomial functions for classification.

3.2. Predictor Selection

In this study, a total of nine variables were regarded as the candidate predictors,
which include both polarimetric (ZH, ZDR, KDP, ρHV, and HGT) and thermodynamic
(Tw, Thick1000–850, Ts, and γlow) variables. Through a variable importance analysis, we
examined the effect of each predictor to classify the precipitation types and selected the
final predictors. The variable importance was measured by mean decrease Gini (MDG)
values and was computed using the “randomForest” package [49] in R software. The
MDG values are the sum of the total decrease in the Gini index from splitting on a given
feature for a tree and are averaged over all trees. A large MDG value indicates an important
predictor for classification.

The analysis indicated that Tw is the most important predictor for classifying the winter
precipitation types (Figure 3). This is consistent with previous works that highlighted that
Tw is a more significant factor in distinguishing the precipitation types than dry-bulb
temperature [5,7,8], as shown by a higher MDG value (1503.05) compared to Ts (851.16).
It is interesting to note that HGT is more important than the other polarimetric variables.
ρHV, which is useful in hydrometeor classification, ranked third among the polarimetric
variables. However, ZDR and KDP have the lowest importance among the candidate
predictors, with MDG of 318.27 and 232.80, respectively. Thus, we excluded ZDR and
KDP from the predictors. In other words, the final set of the predictors for the ML models
includes three polarimetric (ZH, ρHV, and HGT) and four thermodynamic (Tw, Thick1000–850,
Ts, and γlow) variables.

3.3. Hyperparameter Tuning

There are several tuning parameters for each ML model. We optimized the ML models
by choosing a set of optimal hyperparameters. The ML models were trained by using the
selected predictors in the training and validation dataset.

DT can be optimized by reducing the depth of trees through pruning. The pruning
reduces the complexity of the DT, improving the prediction accuracy by removing the
overfitted subtrees. We conducted pruning using the argument called complexity parameter
(cp) in the “rpart” package [50] in R software. It is based on the cost-complexity algorithm
to find the optimal depth of the tree [45]. The optimal size of trees is typically chosen
when cp is near 0.01. If the value is smaller than 0.01, DT tends to be complicated and
overfit. The size of the tree (and corresponding cp value) is displayed in Figure 4 with the
10-fold cross-validation error (i.e., X-val relative error). The DT was appropriately pruned
by choosing seven leaves to be the size of the tree.
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Figure 4. X-val relative error of the DT model as a function of the different sizes of tree and corre-
sponding cp value.

RF has two hyperparameters: the number of trees (ntree) and the number of predictors
(mtry). Predictors are randomly sampled in each DT. Liaw and Wiener [49] suggested
ntree of 500 and mtry of

√
p as the default value for a classification problem, where p is

the total number of predictors. The default value of mtry is 3 (≈
√

7) since p is 7 in this
study. To determine the optimal values of mtry and ntree, we calculated the out-of-bag
error (OOB error) by varying the mtry from 1 to 7 and ntree from 100 to 1500 (Figure 5).
The local minimum of OOB error (0.092) was found at mtry of 4 and ntree of 500. The
OOB error decreased from about 0.098 to 0.092 until mtry was 4 when ntree was 500 then
tended to increase with increasing mtry. The global minimum appeared at ntree of 1500 and
mtry of 3, but time efficiency must be considered given the similar OOB error but longer
computational time compared to ntree of 500. Therefore, we selected mtry of 4 and ntree of
500 as optimal values.
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Lastly, SVM can be optimized using the cost and gamma values where the best model
performance is achieved. The cost specifies the width of the margin. The cost results in a
trade-off between high accuracy and smoothing decision boundary. A larger cost leads to a
narrower margin (i.e., lower error) but might also increase the chance of overfitting. The
gamma determines the distance of influence of a single training point. High gamma reduces
the distance of influence as closer points have more weight. We evaluated the SVM model
with various combinations of cost and gamma and examined the 10-fold cross-validation
error rate (Figure 6). We found the optimal cost value of 0.1 and the gamma value of 3,
where the lowest error rate (0.14) occurred.
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3.4. Validation

The 70–30 hold-out validation was performed to compare the accuracy of ML models.
The numbers of the training and validation data for each class are summarized in Table 2.
A total of 8692 and 3675 10 min data were used for training and validation, respectively.
It is also necessary to examine whether the ML model can provide a better classification
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compared to the scheme in operation. Therefore, in addition to the hold-out validation,
we compared the best ML model with the optimized Matsuo scheme (see Appendix A
for details), which is currently used as a fundamental reference for forecasters to make
decisions [15].

Table 2. The number of 10 min data for the training and validation.

No Precipitation
(CLR)

Rain
(RA)

Mixed
(MIX)

Snow
(SN) Overall

Training set 3376 3721 128 1467 8692
Validation set 1425 1572 45 633 3675

Total 4801 5293 173 2100 12,367

To assess model accuracy, we used the probability of detection (POD), false alarm rate
(FAR), and critical success index (CSI). The POD, FAR, and CSI were derived based on
4 × 4 contingency metrics. The perfect score of POD and CSI is 1, whereas the perfect score
of FAR is 0. They are defined as follows:

POD =
H

H + M
(3)

FAR =
F

H + F
(4)

CSI =
H

H + M + F
(5)

where a hit (H) occurs when the predicted type agrees with the observation, a miss (M)
happens when a precipitation type was observed and the model predicts another type, and
a false alarm (F) represents the case when the predicted type does not occur.

4. Verification of Precipitation Type Classification

We evaluated the performance of ML models for each precipitation type using 70–30 hold-
out validation. All ML models showed a high POD for CLR, RA, and SN (Figure 7). Among
the types, RA showed the best POD (0.931 for RF, 0.926 for SVM, and 0.882 for DT). This is
not surprising given the huge amount of training data of RA. Despite the smaller amount
of training data (less than half of RA), SN presented comparable performance to RA. In
the case of MIX, all ML showed low scores (e.g., CSI less than 0.3). The smaller number of
training data (1.47% of total training data) could be one of the primary reasons, but strong
variability of the atmospheric condition in time and space with MIX [17] also makes the
classification difficult.

For all precipitation types, the RF had the best score, followed by the SVM and the DT.
The RF presented a POD of higher than 0.9 and a CSI of higher than 0.8 for both RA and
SN. The RF also showed a better skill in the classification of MIX, as shown by the CSI of
~0.3, which is definitely higher than that of SVM (0.120).

As mentioned above, it is important to investigate whether ML models can perform
better than the scheme in operation. The best ML model (RF) was compared with the
optimized Matsuo scheme. Since the optimized Matsuo scheme (MS) does not consider no
precipitation, CLR was excluded from validation.

As shown in Figure 8, the RF outperformed the optimized Matsuo scheme in the
overall statistics. Both methods presented good performance in RA and SN. In particular,
the PODs of the RF for RA and SN were almost equal to 1. In the MIX case, the RF showed
a POD, FAR, and CSI of 0.441, 0.250, and 0.385, respectively. Although MIX is the most
challenging type to predict, the RF reduced FAR by 0.742 (from 0.922 to 0.250) and increased
CSI by 0.316 (from 0.069 to 0.385) compared to the optimized Matsuo scheme.
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5. Application to the Operational Radar Network

We applied the best model, RF, to the Korean S-band operational radar network. The
aim of this part was to present some examples of how the selected ML model can be applied
to the operational radar network. The classification of precipitation types by RF over the
domain is shown in Figures 9 and 10. Note that the KMA expanded the domain of the
national 3D radar mosaic product and included four more S-band radars in 2022.

In the rain-dominant case at 0310 LST, 1 March 2022, a widespread precipitation
system was classified into either rain or no precipitation (Figure 9a). The areas where RF
predicted rain had good agreement with the ground truth. It was also noticed that the
regions of no precipitation (see the zoom-in-box) are consistent with the surface observation.
A good agreement with the ground truth indicated the good capability of the proposed
model to identify the region of no precipitation (in addition to rain) in a widespread
precipitation system.
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The spatial distribution of the RF classification for the snow-dominant case (1420 LST,
15 February 2022) is shown in Figure 9b. Widespread snowfall dominated across the western
part of the Korean Peninsula. The RF model performed well to capture the transition from
no precipitation (due to sublimation) to snow. This result implies that the RF will be helpful
for forecasters to determine areas of no snow but weak or moderate reflectivity.

Several cases when multiple precipitation types occurred were also examined (Figure 10).
While the classification was performed at high resolution, the transition of precipitation
type (from rain to snow) was consistent with the observed type (Figure 10a) even in the
region where different types of precipitation were distributed in a small area.

Another example shown in Figure 10b illustrates the performance of RF in a case when
no precipitation dominated. Although moderate or weak reflectivity occurred in most areas
of South Korea, the RF classified a large fraction of no precipitation (Figure 10b). The result
is reasonable because it coincides with the no precipitation report from the surface station.
The narrow region of snow (near the bottom left region of the zoom-in-box in Figure 10b)
was detected by RF and agrees with the snow report. The last example (19 March 2022)
showing the result in the area of the mountainous region (Figure 10c) represented better
chances of snow in the NW-SE-oriented mountain range. Besides, mixed precipitation
reported at the station located near the coastal region was accurately discriminated as MIX
by the RF.

Note that the trained ML model is also computationally efficient. In our case, the
classification for the whole Korean radar domain was completed in a few seconds on
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Intel Xeon Gold 6154 CPU at 3.00 GHz with single core, which met the computational
requirement for the real-time operation. This is an encouraging result given the difficulties
in performing the satisfactory classification in realtime due to the trade-off between the
complexity of the algorithm (generally better accuracy) and the computational efficiency. It
should be noted that the proposed model requires a thermodynamical field (e.g., variables
from the NWP model) as well as polarimetric radar variables. If one datum is not available,
the model is not applicable.

6. Discussion

Our results indicated that Tw and Thick1000–850 were highly related to the precipitation
types as selected in the top two variables from the variable importance analysis. This is
in agreement with previous studies that recommended the use of Tw for classifying the
precipitation types [5–8] since it better reflected the actual temperature of precipitation
particles. This can be also seen from the distribution of Tw in the training dataset for each
precipitation type (Figure 11a), which exhibited the distinctive dependence of RA, MIX, and
SN on Tw. Except for CLR, the distribution of Tw of RA, MIX, and SN showed almost no
overlap with each other, indicating that Tw acted as a critical factor. The narrow distribution
of MIX (−1.95 to 2.64 ◦C) means Tw can serve as a significant factor in differentiating the
most challenging type (MIX) from others.
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Similarly, the distribution of Thick1000–850, which reflects the mean temperature of the
layer [12,15], showed strong dependence on the precipitation type (Figure 11b). Analogous
to Tw, except for CLR, Thick1000–850 was also distributed in different ranges of values
according to the precipitation type so that they did not overlap with each other. This
result indicates that both Tw and Thick1000–850 were the key factors for discriminating the
precipitation types.

The presented ML model showed the reasonable identification of no precipitation
areas. This could be helpful in many fields where accurate identification of the precipitation
area is important such as transportation, agriculture, hydrology, and atmospheric science.
To examine the evaporation or sublimation, one can utilize polarimetric variables [51–54]
or/and the humidity profile from the NWP model [55]. Our study suggests that HGT can
also be one of the useful factors in identifying the presence of precipitation on the ground
(Figure 11c) without explicit representation of evaporation or sublimation. The HGT of CLR
had higher values that are distinguishable from other types (Figure 11c). This is because
the HGT implies the depth where evaporation or sublimation can occur “below the height
of radar echo base”.
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There is still room for improvement in the model through careful treatment of noisy
polarimetric variables, particularly ZDR and KDP. Despite the lowest importance of ZDR
and KDP in this study, the literature suggests that these variables are still believed to be
good factors to differentiate between snowfall, melting layers, and rainfall regions [56–58].
The most likely reason for the low importance is the noisiness of ZDR and KDP. With the
reduction in the noisiness through a proper smoothing technique, the model was expected
to have better performance by taking particle shape information into account.

Another thing that could lead to better performance of the model is the consideration
of horizontal advection due to vertical displacement between the radar measurement and
the surface, which can lead hydrometers to fall to another location on the ground. Although
this study accounted for the radar variables at the lowest altitude, the location error by
horizontal advection may be problematic in a strong low-level wind condition. The HGT
may indirectly reflect the effect of the horizontal wind. However, one could obtain better
predictions through an appropriate method to deal with this limitation.

In our study, we classified the precipitation type into CLR, RA, MIX, and SN. However,
there are several important precipitation phases that we could not consider due to a lack
of data such as freezing rain, ice pellets [58–62], and hail [63,64]. The ML model could be
extended to include them when a sufficient number of data for these types are available.

7. Conclusions

Accurate classification of winter precipitation type at the surface is necessary for
forecasters and researchers to minimize the damage of natural disasters on human life but
is challenging due to its high variability in small changes in a thermodynamic environment.
In this paper, to tackle this problem, we presented the ML-based winter precipitation type
classification algorithm. The presented model attempts to exploit both polarimetric and
thermodynamic variables to incorporate thermodynamical information into the classifi-
cation while taking advantage of rapidly updating radar data. We tested three widely
used supervised ML (DT, RF, and SVM) algorithms. The precipitation type (CLR, RA, MIX,
and SN) was considered as a response. To select the important predictors, we conducted
a variable importance analysis using a total of 9 candidate predictors from polarimetric
radar and thermodynamical field. Subsequently, the selected 7 predictors were used in the
ML models. We optimized the ML models by tuning hyperparameters and evaluated the
accuracy of the three optimized models. RF was chosen as the best model.

As expected, the variable importance analysis confirmed that Tw and Thick1000–850 are
essential factors for distinguishing between the precipitation type (RA, MIX, and SN). This
study also found the higher importance of HGT compared to other polarimetric variables.
This was because HGT acted as a useful factor in discriminating no precipitation (CLR)
from the precipitation type (RA, MIX, and SN).

Our fine-tuned ML models were successful in discriminating CLR, RA, MIX, and
SN. The RF showed the best performance with the highest POD and the lowest FAR for
all precipitation types. In particular, the RF showed the highest CSI for CLR (0.784), RA
(0.846), MIX (0.283), and SN (0.840). In addition, we compared the proposed model with
the optimized Matsuo scheme which is currently in operation. The results demonstrated
that the ML algorithm outperformed the optimized Matsuo scheme. Despite the better
performance compared to the optimized Matsuo scheme, the relatively lower score of MIX
compared to other types suggests a classification of MIX remains a challenge (CSI of 0.283).

We further applied the RF to the operational S-band radar network to check the spatial
distribution of the classification. The ground precipitation type was estimated at each radar
grid point at a high spatial resolution (500 m). The results were generally reasonable as
they showed not only the continuity in both time and space but also a good agreement
with the ground truth. It should be mentioned that the ML technique is computationally
efficient so the proposed model would be useful for solving realtime classification problems
in other applications.
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Appendix A. The Optimized Matsuo Scheme

In this section, we presented how the optimized Matsuo scheme classifies the pre-
cipitation type. The procedure is described in [15], but we restate the methodology here
since [15] is not written in English. There are two steps to determine the precipitation
type: (1) discriminate snow and rain using Thick1000–850 and proceed to step 2 for the
undetermined types, and (2) determine the final precipitation type based on the criteria as a
function of RH and Ts. The criteria for each step are summarized in Table A1. Additionally,
see their comprehensive figure (Figure 7 in [15]) which overlays the step 2 criteria.

Table A1. Criteria of the optimized Matsuo scheme to determine the precipitation type. Adapted
from [15] with permission from Korean Meteorological Society.

Step Criteria Precipitation Type

1

Thick1000–850 < 1281 SN

1281 ≤ Thick1000–850 ≤ 1297 (Proceed to step 2)

1297 < Thick1000–850 RN

2

RH ≥ 75 and Ts ≤ 0.9
and RH < (−100/13) × Ts + 102.5

SN
Ts > 0.9 and RH < (−100/13) × Ts + 89.5

or Ts ≤ 0.9 and RH < 75

RH ≥ (−100/13) × Ts + 89.5
and RH < (−100/13) × Ts + 100

and RH < (−12) × Ts + 120 and Ts > 0.9
MIX

Ts > 0.9 and RH ≥ (−100/13) × Ts + 100
and RH < (−12) × Ts + 120

or Ts ≤ 0.9 and RH ≥ (−100/13) × Ts + 102.5

RH ≥ (−12) × Ts + 120 RN
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