A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Software Selection
2.2. Data Collection and Methodology
2.2.1. Data Collection
2.2.2. Analysis Methods
3. Results and Discussion
3.1. Analysis of Publishing Status
3.2. Analysis of Category
3.3. Analysis of Country
3.4. Analysis of Institutions
3.5. Analysis of Keywords
3.6. Analysis of Research Hot Spots
4. Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 1997, 35, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, K.; Hijmans, R.J.; Chemin, Y.; Elvidge, C.D.; Sugimoto, K.; Wu, W.B.; Lee, Y.W.; Shibasaki, R. Mapping the global supply and demand structure of rice. Sustain. Sci. 2009, 4, 301–313. [Google Scholar] [CrossRef]
- Peprah, C.O.; Yamashita, M.; Yamaguchi, T.; Sekino, R.; Takano, K.; Katsura, K. Spatio-Temporal Estimation of Biomass Growth in Rice Using Canopy Surface Model from Unmanned Aerial Vehicle Images. Remote Sens. 2021, 13, 2388. [Google Scholar] [CrossRef]
- Madry, S. Introduction and History of Space Remote Sensing. In Handbook of Satellite Applications; Springer: New York, NY, USA, 2017; pp. 823–832. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.K.; Li, Y.C.; Ma, M.G. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Cryder, M.; Basso, B. Remote Sensing: Advancing the Science and the Applications to Transform Agriculture. It Prof. 2020, 22, 42–45. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Hou, L.X.; Mao, L.X.; Liu, H.C.; Zhang, L. Decades on emergency decision-making: A bibliometric analysis and literature review. Complex Intell. Syst. 2021, 7, 2819–2832. [Google Scholar] [CrossRef]
- Yang, G.J.; Liu, J.G.; Zhao, C.J.; Li, Z.H.; Huang, Y.B.; Yu, H.Y.; Xu, B.; Yang, X.D.; Zhu, D.M.; Zhang, X.Y.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 26. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.P. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Zhong, S.Z.; Geng, Y.; Liu, W.J.; Gao, C.X.; Chen, W. A bibliometric review on natural resource accounting during 1995–2014. J. Clean. Prod. 2016, 139, 122–132. [Google Scholar] [CrossRef]
- Ye, N.; Kueh, T.B.; Hou, L.S.; Liu, Y.X.; Yu, H. A bibliometric analysis of corporate social responsibility in sustainable development. J. Clean. Prod. 2020, 272, 122679. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Wang, X.W. Scientometric profile of global rice research during 1985-2014. Curr. Sci. 2017, 112, 1003–1011. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Da’na, D.A.; Al-Ghouti, M.A. Application of MALDI-TOF MS for identification of environmental bacteria: A review. J. Environ. Manag. 2022, 305, 114359. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cui, L.Z.; Xu, Z.H.; Hu, R.H.; Joshi, P.K.; Song, X.F.; Tang, L.; Xia, A.Q.; Wang, Y.F.; Guo, D.; et al. Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sens. 2021, 13, 1279. [Google Scholar] [CrossRef]
- Viana, J.; Santos, J.V.; Neiva, R.M.; Souza, J.; Duarte, L.; Teodoro, A.C.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, S.M.B.; Bento-Goncalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Wang, Z.; Liu, J.; Shang, J.; Liang, L. Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sens. 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Abati, R.; Sampaio, A.R.; Maciel, R.M.A.; Colombo, F.C.; Libardoni, G.; Battisti, L.; Lozano, E.R.; Ghisi, N.D.; Costa-Maia, F.M.; Potrich, M. Bees and pesticides: The research impact and scientometrics relations. Environ. Sci. Pollut. Res. 2021, 28, 32282–32298. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. From the science of science to Scientometrics visualizing the history of science with HistCite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Hindsight, insight, and foresight: A multi-level structural variation approach to the study of a scientific field. Technol. Anal. Strateg. Manag. 2013, 25, 619–640. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.X.; Wang, X.T.; Huang, M.L.; Li, Z.G.; Shen, Z.; Feng, J.J.; Chen, H.M.; Wu, J.J.; Gao, J.Y.; Wen, Z.; et al. Research hotspots and trends of bone defects based on Web of Science: A bibliometric analysis. J. Orthop. Surg. Res. 2020, 15, 463. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S. Knowledge Structure of the Application of High-Performance Computing: A Co-Word Analysis. Sustainability 2021, 13, 11249. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Shi, Y.L.; Liu, X.P. Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.W.; Lin, A.; Willett, P. Identification of research communities in cited and uncited publications using a co-authorship network. Scientometrics 2019, 118, 1–19. [Google Scholar] [CrossRef]
- Chen, C.M.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Doraiswamy, P.C.; Sinclair, T.R.; Hollinger, S.; Akhmedov, B.; Stern, A.; Prueger, J. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ. 2005, 97, 192–202. [Google Scholar] [CrossRef]
- Li, S.Y.; Yuan, F.; Ata-Ui-Karim, S.T.; Zheng, H.B.; Cheng, T.; Liu, X.J.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.H.; Liu, X.J.; Nguyen, T.; He, Q.Q.; Hong, S. Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics 2013, 96, 203–219. [Google Scholar] [CrossRef]
- Toth, C.; Jozkow, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Huang, Y.; Ryu, Y.; Jiang, C.; Kimm, H.; Kim, S.; Kang, M.; Shim, K. BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model. Agric. For. Meteorol. 2018, 256, 253–269. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.P.; Fan, X.T.; Yan, Z.Z.; Kang, X.J.; Zhu, J.J.; Hu, Z.Y. A Modular Remote Sensing Big Data Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3000311. [Google Scholar] [CrossRef]
- Yang, L.Y.; Yue, T.; Ding, J.L.; Han, T. A comparison of disciplinary structure in science between the G7 and the BRIC countries by bibliometric methods. Scientometrics 2012, 93, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarpour, R.; Khasseh, A.A. Twenty-six years of LIS research focus and hot spots, 1990–2016: A co-word analysis. J. Inf. Sci. 2021, 47, 794–808. [Google Scholar] [CrossRef]
- Tian, M.; Li, J. Knowledge mapping of protective clothing research-a bibliometric analysis based on visualization methodology. Text. Res. J. 2019, 89, 3203–3220. [Google Scholar] [CrossRef]
- Kirchmann, H.; Thorvaldsson, G. Challenging targets for future agriculture. Eur. J. Agron. 2000, 12, 145–161. [Google Scholar] [CrossRef]
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current Status and Challenges of Rice Production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Huang, J.X.; Hu, J.X. Mapping rice planting areas in southern China using the China Environment Satellite data. Math. Comput. Model. 2011, 54, 1037–1043. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.L.; Cheng, J.Y.; Ke, Y.H.; Chen, X.W. Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sens. 2019, 11, 1699. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Li, Z.G.; Tang, P.Q.; Li, Z.P.; Wu, W.B.; Yang, P.; You, L.Z.; Tang, H.J. Change analysis of rice area and production in China during the past three decades. J. Geogr. Sci. 2013, 23, 1005–1018. [Google Scholar] [CrossRef]
- Chen, A.Q.; He, H.X.; Wang, J.; Li, M.; Guan, Q.C.; Hao, J.M. A Study on the Arable Land Demand for Food Security in China. Sustainability 2019, 11, 4769. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.B.; Wang, L.M.; Huang, J.F.; Mansaray, L.R.; Mijiti, R. Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101892. [Google Scholar] [CrossRef]
- Yu, Y.; Clark, J.S.; Tian, Q.S.; Yan, F.X. Rice yield response to climate and price policy in high-latitude regions of China. Food Secur. 2022, 1–15. [Google Scholar] [CrossRef]
- Wang, M.; Shi, P.J.; Ye, T.; Liu, M.; Zhou, M.Q. Agriculture Insurance in China: History, Experience, and Lessons Learned. Int. J. Disaster Risk Sci. 2011, 2, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Jiao, W.J. Application of Remote Sensing Technology in Agriculture of the USA. In Proceedings of the 9th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture (CCTA), China Agricultural University, Beijing, China, 27–30 September 2015; pp. 107–114. [Google Scholar]
- Quintana-Ashwell, N.; Gholson, D.M.; Krutz, L.J.; Henry, C.G.; Cooke, T. Adoption of Water-Conserving Irrigation Practices among Row-Crop Growers in Mississippi, USA. Agron.-Basel 2020, 10, 1083. [Google Scholar] [CrossRef]
- Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 154, pp. 201–255. [Google Scholar]
- Carroll, S.R.; Le, K.N.; Moreno-Garcia, B.; Runkle, B.R.K. Simulating Soybean-Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX. Sustainability 2020, 12, 6822. [Google Scholar] [CrossRef]
- Schueller, J.K. Agricultural Mechanization in the United States of America. Ama-Agric. Mech. Asia Afr. Lat. Am. 2020, 51, 60–+. [Google Scholar]
- Oyoshi, K.; Tomiyama, N.; Okumura, T.; Sobue, S.; Sato, J. Mapping rice-planted areas using time-series synthetic aperture radar data for the Asia-RiCE activity. Paddy Water Environ. 2016, 14, 463–472. [Google Scholar] [CrossRef]
- Kako, T. Economic development and food security issues in Japan and South Korea. In Proceedings of the Taipei International Conference on East Asian Food Security Issues in the 21st Century, Taipei, Taiwan, 16–17 April 1998; pp. 119–140. [Google Scholar]
- Slafer, G.A.; Kernich, G.C. Have changes in yield (1900–1992) been accompanied by a decreased yield stability in Australian cereal production? Aust. J. Agric. Res. 1996, 47, 323–334. [Google Scholar] [CrossRef]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Nowak, A.; Kaminska, A. Agricultural competitiveness: The case of the European Union countries. Agric. Econ. -Zemed. Ekon. 2016, 62, 507–516. [Google Scholar] [CrossRef]
- Iriarte, J.; Elliott, S.; Maezumi, S.Y.; Alves, D.; Gonda, R.; Robinson, M.; de Souza, J.G.; Watling, J.; Handley, J. The origins of Amazonian landscapes: Plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 2020, 248, 106582. [Google Scholar] [CrossRef]
- Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Corassa, G.M.; Ciampitti, I.A. Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS J. Photogramm. Remote Sens. 2021, 176, 196–210. [Google Scholar] [CrossRef]
- Fuller, D.Q. Pathways to Asian Civilizations: Tracing the Origins and Spread of Rice and Rice Cultures. Rice 2011, 4, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Anthropogenic influences on world soils and implications to global food security. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 93, pp. 69–93. [Google Scholar]
- Mirza, M.M.Q. Climate change, flooding in South Asia and implications. Reg. Environ. Chang. 2011, 11, S95–S107. [Google Scholar] [CrossRef]
- He, S.; Li, F.Y.; Liang, X.Q.; Li, H.; Wang, S.; Jin, Y.B.; Liu, B.Y.; Tian, G.M. Window phase analysis of nutrient losses from a typical rice-planting area in the Yangtze river delta region of China. Environ. Sci. Eur. 2020, 32, 10. [Google Scholar] [CrossRef]
- Ray, A.; Chakraborty, A. The edible biota in irrigated, deepwater, and rainfed rice fields of Asia: A neglected treasure for sustainable food system. Environ. Dev. Sustain. 2021, 23, 17163–17179. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Nauman, M.; Ghafoor, A.; Farooque, A.A.; Haydar, Z.; Ashraf, M.U.; Awais, M. Direct seeding of basmati rice through improved drills: Potential and constraints in pakistani farm settings. Appl. Eng. Agric. 2021, 37, 53–63. [Google Scholar] [CrossRef]
- Song, J.B.; Zhang, H.L.; Dong, W.L. A review of emerging trends in global PPP research: Analysis and visualization. Scientometrics 2016, 107, 1111–1147. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.H.; Ye, C.; Wang, J.; Wei, W.W.; Deng, Y. Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database. Ecol. Model. 2019, 410, 108779. [Google Scholar] [CrossRef]
- Li, X.J.; Ma, E.; Qu, H.L. Knowledge mapping of hospitality research—A visual analysis using CiteSpace. Int. J. Hosp. Manag. 2017, 60, 77–93. [Google Scholar] [CrossRef]
- Frolking, S.; Xiao, X.M.; Zhuang, Y.H.; Salas, W.; Li, C.S. Agricultural land-use in China: A comparison of area estimates from ground-based census and satellite-borne remote sensing. Glob. Ecol. Biogeogr. 1999, 8, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.H.; Tan, X.M.; Zeng, Y.J.; Xie, X.B.; Pan, X.H.; Shi, Q.H.; Zhang, J. Changes in the rice grain quality of different high-quality rice varieties released in southern China from 2007 to 2017. J. Cereal Sci. 2019, 87, 111–116. [Google Scholar] [CrossRef]
- Reynolds, M.; Kropff, M.; Crossa, J.; Koo, J.; Kruseman, G.; Milan, A.M.; Rutkoski, J.; Schulthess, U.; Balwinder, S.; Sonder, K.; et al. Role of Modelling in International Crop Research: Overview and Some Case Studies. Agron.-Basel 2018, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Tack, J.; Coble, K.H.; Johansson, R.; Harri, A.; Barnett, B.J. The Potential Implications of “Big Ag Data” for USDA Forecasts. Appl. Econ. Perspect. Policy 2019, 41, 668–683. [Google Scholar] [CrossRef]
- Adjemian, M.K.; Smith, A. Using USDA Forecasts to Estimate the Price Flexibility of Demand for Agricultural Commodities. Am. J. Agric. Econ. 2012, 94, 978–995. [Google Scholar] [CrossRef]
- Lark, T.J.; Schelly, I.H.; Gibbs, H.K. Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Boryan, C.G.; Yang, Z.W.; Di, L.P.; Hunt, K. A New Automatic Stratification Method for US Agricultural Area Sampling Frame Construction Based on the Cropland Data Layer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4317–4327. [Google Scholar] [CrossRef]
- Duan, P.L.; Wang, Y.Q.; Yin, P. Remote Sensing Applications in Monitoring of Protected Areas: A Bibliometric Analysis. Remote Sens. 2020, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Peddle, D.R.; White, H.P.; Soffer, R.J.; Miller, J.R.; LeDrew, E.F. Reflectance processing of remote sensing spectroradiometer data. Comput. Geosci. 2001, 27, 203–213. [Google Scholar] [CrossRef]
- Tian, Y.C.; Gu, K.J.; Chu, X.; Yao, X.; Cao, W.X.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 2014, 376, 193–209. [Google Scholar] [CrossRef]
- Guedes, J.C.F.; da Silva, S.M.P. Remote sensing in vegetation study: Physical principles, sensors and methods. Rev. Acta Geogr. 2018, 12, 127–144. [Google Scholar]
- Yang, K.L.; Gong, Y.; Fang, S.H.; Duan, B.; Yuan, N.G.; Peng, Y.; Wu, X.T.; Zhu, R.S. Combining Spectral and Texture Features of UAV Images for the Remote Estimation of Rice LAI throughout the Entire Growing Season. Remote Sens. 2021, 13, 3001. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Munoz-Mari, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Guay, K.C.; Beck, P.S.A.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Xu, T.Y.; Wang, F.M.; Xie, L.L.; Yao, X.P.; Zheng, J.Y.; Li, J.L.; Chen, S.T. Integrating the Textural and Spectral Information of UAV Hyperspectral Images for the Improved Estimation of Rice Aboveground Biomass. Remote Sens. 2022, 14, 2534. [Google Scholar] [CrossRef]
- Guo, B.; Han, B.M.; Yang, F.; Fan, Y.W.; Jiang, L.; Chen, S.T.; Yang, W.N.; Gong, R.; Liang, T. Salinization information extraction model based on VI-SI feature space combinations in the Yellow River Delta based on Landsat 8 OLI image. Geomat. Nat. Hazards Risk 2019, 10, 1863–1878. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for Eos-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Kior, A.; Sukhov, V.; Sukhova, E. Application of Reflectance Indices for Remote Sensing of Plants and Revealing Actions of Stressors. Photonics 2021, 8, 582. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Munehiro, M.; Omasa, K. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynth. Res. 2012, 113, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.W.; Wang, C.; Chen, J.; Shen, M.G.; Shen, B.B.; Yan, R.R.; Li, Z.W.; Karnieli, A.; Chen, J.Q.; Yan, Y.C.; et al. The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sens. Environ. 2021, 264, 112578. [Google Scholar] [CrossRef]
- Xue, J.R.; Su, B.F. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Zhu, Y. Extracting Red Edge Position Parameters from Ground- and Space-Based Hyperspectral Data for Estimation of Canopy Leaf Nitrogen Concentration in Rice. Plant Prod. Sci. 2011, 14, 270–281. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.K.; Shen, P.C.; Li, W.Y.; Liu, X.J.; Cao, Q.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.; Xiang, C.L.; Liu, H.; Glowacz, A.; Pan, W. Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information 2019, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Ata-Ul-Karim, S.T.; Singh, B.P.; Wang, H.; Wu, T.; Liu, C.; Fang, G.; Zhou, D.; Wang, Y.; Chen, W. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 2019, 1, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Zhong, D.L.; Li, Y.X.; Huang, Y.J.; Hong, X.J.; Li, J.; Jin, R.J. Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front. Mol. Biosci. 2022, 8, 797902. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.J.; Zhang, Q.; Wei, J.X.; Zhou, H.H. Scientometric Analysis of Public Health Emergencies: 1994–2020. Int. J. Environ. Res. Public Health 2022, 19, 640. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- An, G.Q.; Xing, M.F.; He, B.B.; Liao, C.H.; Huang, X.D.; Shang, J.L.; Kang, H.Q. Using Machine Learning for Estimating Rice Chlorophyll Content from In Situ Hyperspectral Data. Remote Sens. 2020, 12, 3104. [Google Scholar] [CrossRef]
- Casanova, D.; Epema, G.F.; Goudriaan, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crop. Res. 1998, 55, 83–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Zhou, Q.B. Advances in crop fine classification based on Hyperspectral Remote Sensing. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Cho, J.; Oki, T. Application of temperature, water stress, CO2 in rice growth models. Rice 2012, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.J.; Chiueh, Y.W.; Hsu, C.T. Modeling risk analysis for rice production due to agro-climate change and uncertainty in irrigation water. Paddy Water Environ. 2018, 16, 35–53. [Google Scholar] [CrossRef]
- Dou, Y.J.; Huang, R.; Mansaray, L.R.; Huang, J.F. Mapping high temperature damaged area of paddy rice along the Yangtze River using Moderate Resolution Imaging Spectroradiometer data. Int. J. Remote Sens. 2020, 41, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W.; Huang, J.F.; Guo, R.F.; Li, X.X.; Sun, W.B.; Wang, X.Z. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data. J. Zhejiang Univ.-SCI. B 2013, 14, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.S.; Singh, S.K.; Neetu; Mamatha, S. Establishing an operational system for assessment and forecasting the impact of extreme weather events on crop production. Mausam 2016, 67, 289–296. [Google Scholar] [CrossRef]
- Wang, P.; Hu, T.G.; Kong, F.; Xu, J.F.; Zhang, D.R. Rice exposure to cold stress in China: How has its spatial pattern changed under climate change? Eur. J. Agron. 2019, 103, 73–79. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Qi, J.G.; Wang, N.N.; Zhu, Z.R.; Luo, J.; Liu, L.J.; Tang, J.; Cheng, J.A. Hyperspectral discrimination of foliar biotic damages in rice using principal component analysis and probabilistic neural network. Precis. Agric. 2018, 19, 973–991. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wu, H.F.; Huang, J.F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput. Electron. Agric. 2010, 72, 99–106. [Google Scholar] [CrossRef]
- Liu, X.D.; Sun, Q.H. Early assessment of the yield loss in rice due to the brown planthopper using a hyperspectral remote sensing method. Int. J. Pest Manag. 2016, 62, 205–213. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Bouman, B.A.M.; Singh, A.K. Yield and water productivity of rice-wheat on raised beds at New Delhi, India. Field Crop. Res. 2007, 100, 229–239. [Google Scholar] [CrossRef]
- Maki, M.; Sritumboon, S.; Srisutham, M.; Yoshida, K.; Homma, K.; Sukchan, S. Impact of changes in the relationship between salinity and soil moisture on remote sensing data usage in northeast Thailand. Hydrol. Res. Lett. 2022, 16, 54–58. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, J.H.; Zhong, C.; Zhu, L.F.; Cao, X.C.; Yu, S.M.; James, A.B.; Hu, J.J.; Jin, Q.Y. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. J. Integr. Agric. 2017, 16, 2357–2374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Y.; Liu, X.N.; Liu, M.L.; Meng, Y.Y. Detection of Rice Phenological Variations under Heavy Metal Stress by Means of Blended Landsat and MODIS Image Time Series. Remote Sens. 2019, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Liu, X.N.; Zhao, L.T.; Ding, C.; Jiang, J.L.; Wu, L. The Dynamic Assessment Model for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1330–1338. [Google Scholar] [CrossRef]
- Zhao, S.; Qian, X.; Liu, X.N.; Xu, Z. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.B.; Li, X.L.; Liu, Y.; Huang, J.F.; Tang, Y.L. Detection of Crude Protein, Crude Starch, and Amylose for Rice by Hyperspectral Reflectance. Spectrosc. Lett. 2014, 47, 101–106. [Google Scholar] [CrossRef]
- Ryu, C.; Suguri, M.; Iida, M.; Umeda, M.; Lee, C. Integrating remote sensing and GIS for prediction of rice protein contents. Precis. Agric. 2011, 12, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop. Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Han, Y.; Liu, H.J.; Zhang, X.L.; Yu, Z.Y.; Meng, X.T.; Kong, F.C.; Song, S.Z.; Han, J. Prediction Model of Rice Panicles Blast Disease Degree Based on Canopy Hyperspectral Reflectance. Spectrosc. Spectr. Anal. 2021, 41, 1220–1226. [Google Scholar] [CrossRef]
- Ryu, J.H.; Oh, D.; Cho, J. Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor. J. Integr. Agric. 2021, 20, 1969–1986. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q.M. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 12. [Google Scholar] [CrossRef]
- Wang, C.Z.; Zhang, Z.; Chen, Y.; Tao, F.L.; Zhang, J.; Zhang, W. Comparing different smoothing methods to detect double-cropping rice phenology based on LAI products—A case study in the Hunan province of China. Int. J. Remote Sens. 2018, 39, 6405–6428. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Kou, W.L.; Qin, Y.W.; Zhang, G.L.; Li, L.; Jin, C.; Zhou, Y.T.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, S.Y.; Tian, Y. Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series. Chaos Solitons Fractals 2020, 140, 110116. [Google Scholar] [CrossRef]
- Yang, S.B.; Zhao, X.Y.; Li, B.B.; Hua, G.Q. Interpreting RADARSAT-2 Quad-Polarization SAR Signatures From Rice Paddy Based on Experiments. IEEE Geosci. Remote Sens. Lett. 2012, 9, 65–69. [Google Scholar] [CrossRef]
- Oh, Y.; Hong, S.Y.; Kim, Y.; Hong, J.Y.; Kim, Y.H. Polarimetric Backscattering Coefficients of Flooded Rice Fields at L- and C-Bands: Measurements, Modeling, and Data Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2714–2721. [Google Scholar] [CrossRef]
- Oza, S.R.; Panigrally, S.; Parihar, J.S. Concurrent use of active and passive microwave remote sensing data for monitoring of rice crop. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 296–304. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Fang, S.H.; Huang, X.; Liu, Y.H.; Guo, L.L. Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images and Red-Edge Bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
- Li, S.Y.; Ding, X.Z.; Kuang, Q.L.; Ata-Ul-Karim, S.T.; Cheng, T.; Liu, X.J.; Tan, Y.C.; Zhu, Y.; Cao, W.X.; Cao, Q. Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Front. Plant Sci 2018, 9, 1834. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.C.; Saha, S.; Hembram, T.K. Application of phenology-based algorithm and linear regression model for estimating rice cultivated areas and yield using remote sensing data in Bansloi River Basin, Eastern India. Remote Sens. Appl.-Soc. Environ. 2020, 19, 100367. [Google Scholar] [CrossRef]
- Nimon, K.F.; Oswald, F.L. Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients. Organ. Res. Methods 2013, 16, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.H.; Hu, L.N.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamashita, H.; Mihara, H.; Morita, A.; Ikka, T. Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms. Int. J. Remote Sens. 2021, 42, 1311–1329. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Ryu, C.S.; Kang, J.G.; Kang, Y.S.; Jun, S.R.; Jang, S.H.; Park, J.W.; Song, H.Y. Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data. Korean J. Remote Sens. 2018, 34, 611–624. [Google Scholar] [CrossRef]
- Zha, H.N.; Miao, Y.X.; Wang, T.T.; Li, Y.; Zhang, J.; Sun, W.C.; Feng, Z.Q.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Prasad, R.; Kumar, P.; Srivastava, P.K.; Rai, P.K. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information. J. Appl. Remote Sens. 2017, 11, 046003. [Google Scholar] [CrossRef]
- Lopez-Andreu, F.J.; Erena, M.; Dominguez-Gomez, J.A.; Lopez-Morales, J.A. Sentinel-2 Images and Machine Learning as Tool for Monitoring of the Common Agricultural Policy: Calasparra Rice as a Case Study. Agron.-Basel 2021, 11, 621. [Google Scholar] [CrossRef]
- Ndikumana, E.; Minh, D.H.T.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Baret, F. Prospect—A model of leaf optical-properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light-scattering by leaf layers with application to canopy reflectance modeling—The sail model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Ganapol, B.D.; Johnson, L.F.; Hammer, P.D.; Hlavka, C.A.; Peterson, D.L. LEAFMOD: A new within-leaf radiative transfer model. Remote Sens. Environ. 1998, 63, 182–193. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture-Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crop. Res. 2021, 267, 108148. [Google Scholar] [CrossRef]
- Hama, A.; Tanaka, K.; Mochizuki, A.; Tsuruoka, Y.; Kondoh, A. Improving the UAV-based yield estimation of paddy rice by using the solar radiation of geostationary satellite Himawari-8. Hydrol. Res. Lett. 2020, 14, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Duc, H.N.; Chang, L.Y. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2014, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.W.; Xiao, X.M. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Ishitsuka, N. Identification of Paddy Rice Areas Using SAR: Some Case Studies in Japan. Jarq-Jpn. Agric. Res. Q. 2018, 52, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.S.; Li, W.Y.; Yu, M.L.; Zhang, X.B.; Ma, Y.; Su, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; et al. Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precis. Agric. 2021, 22, 51–74. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chen, Z.X.; Yu, T.; Huang, X.Z.; Gu, X.F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Li, P.L.; Zhang, X.; Wang, W.H.; Zheng, H.B.; Yao, X.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Chen, Q.; Cheng, T. Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102132. [Google Scholar] [CrossRef]
- Han, X.; Liu, F.B.; He, X.L.; Ling, F.L. Research on Rice Yield Prediction Model Based on Deep Learning. Comput. Intell. Neurosci. 2022, 2022, 1922561. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.X.; Wu, J.; Xiao, C.Z.; Zhang, Z.; Li, J.Z. The Classification Method Study of Crops Remote Sensing with Deep Learning, Machine Learning, and Google Earth Engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Jin, X.L.; Kumar, L.; Li, Z.H.; Feng, H.K.; Xu, X.G.; Yang, G.J.; Wang, J.H. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Xie, X.; Yang, S.Q. An Warning Information System for Rice Disease Based on WebGIS. In Proceedings of the 8th International Conference on Applied Science, Engineering and Technology (ICASET), Qingdao, China, 25–26 March 2018; pp. 96–100. [Google Scholar]
- Li, X.Q.; Li, L.; Liu, X.N. Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 39–52. [Google Scholar] [CrossRef]
Search Plan | Design Perspective | Content Details |
---|---|---|
Title | Rice | |
Topics | Main | Remote sensing |
Satellite platform | “Landsat”, “NOAA”, “ASTER”, “ENVISAT”, “Sentinel”, “TRMM”, “MODIS”, “radar”, “SAR”, “synthetic aperture radar”, (satellite and image), (satellite and imagery), (HJ and satellite), (GF and satellite), (satellite and SPOT), “CBERS”, (WorldView and satellite), (GeoEye and satellite), (RapidEye and satellite), (ALOS and satellite), (QuickBird and satellite), (TerraSAR-X Radar), (IKONOS and satellite), (ZY and satellite) | |
UAV platform | “UAV”, “UAS”, “RPAS”, “drone”, “unmanned aircraft”, “unmanned aerial vehicle”, “Lidar” | |
Ground platform | “spectrometer”, “ASD”, “analytical spectral device”, “active sensor”, “optical sensor”, “GreenSeeker”, “proximal ground platform” | |
Sensors | “AVHRR”, (image and TM), (image and ETM+), (image and OLI) | |
Wavelength | “reflectance”, “hyperspectral”, “multispectral”, “back-scattering”, “microwave”, “near-infrared”, “red-edge”, “short wave infrared’’, “polarization”, “polarimetric”, “NIR” | |
Images | (aerial orthophoto), (aerial data), (aerial orthoimages) |
Rank | Countries | Publications | Centrality |
---|---|---|---|
1 | People’s Republic of China | 1137 | 0.12 |
2 | The United States of America (USA) | 374 | 0.84 |
3 | Japan | 283 | 0.10 |
4 | India | 273 | 0.05 |
5 | Thailand | 142 | 0.01 |
6 | South Korea | 116 | 0.02 |
7 | Malaysia | 77 | 0.02 |
8 | Australia | 74 | 0.06 |
8 | Italy | 74 | 0.06 |
9 | Brazil | 72 | 0.01 |
10 | Spain | 67 | 0.08 |
Rank | Institutions | Publications | Focus |
---|---|---|---|
1 | Chinese Academy of Sciences (CAS) | 220 | Rice growth, leaf area index (LAI), Radar, growth monitoring and yield estimation, etc. |
2 | Zhejiang University | 152 | Rice planting area, chlorophyll, rice yield estimation, etc. |
3 | Nanjing Agriculture University | 92 | Nitrogen nutrition, rice growth monitoring and product, rice growth model, etc. |
4 | Consultative Group on International Agricultural Research (CGIAR) | 71 | Rice mapping, rice meteorological remote sensing, rice phenology, etc. |
5 | China University of Geoscience | 56 | Heavy metal pollution, heavy metal stress, etc. |
5 | Chinese academy of agricultural sciences | 56 | Temporal and spatial pattern dynamics of rice, rice yield estimation, etc. |
6 | Wuhan University | 55 | Rice heterosis mechanism, data processing, rice parameters and yield, etc. |
7 | Indian Council of Agricultural Research (ICAR) | 54 | Rice gene, rice quality, etc. |
7 | United states department of agriculture (USDA) | 54 | Rice yield, rice quality, rice mapping, etc. |
8 | China agricultural University | 51 | Rice spectrum, rice identification, rice area extraction, etc. |
9 | Indian institute of technology system (IIT SYSTEM) | 46 | Rice nitrogen, rice spectrum, etc. |
10 | National agriculture food research organization Japan | 43 | Rice classification, rice disasters, etc. |
Rank | Keywords | Publications | Percentage | Year |
---|---|---|---|---|
1 | Reflectance | 361 | 18.44% | 1991 |
2 | Vegetation index | 272 | 13.89% | 1991 |
3 | Model | 248 | 12.67% | 1992 |
4 | Yield | 223 | 11.39% | 1996 |
5 | Classification | 179 | 9.14% | 1991 |
6 | Leaf area index (LAI) | 165 | 8.43% | 1996 |
7 | Moderate Resolution Imaging Spectrometer (MODIS) | 142 | 7.25% | 2004 |
8 | Biomass | 136 | 6.95% | 1993 |
9 | Chlorophyll content | 124 | 6.33% | 1994 |
10 | Phenology | 108 | 5.52% | 2009 |
Research Objects | Keywords | Publications | Strength | Burst Year |
---|---|---|---|---|
Growth | Leaf area index (LAI) | 165 | 1.97 | 2003 |
Biomass | 136 | 5.82 | 1998 | |
Chlorophyll | 124 | 2.15 | 2001 | |
Phenology | 108 | 2.97 | 2015 | |
Nitrogen | 103 | 4.69 | 2013 | |
Yield | 223 | 2.12 | 2006 | |
Area | Area extraction | 125 | 0.41 | 1997 |
Planting area | 22 | 0.41 | 1998 | |
Stress | Meteorological disaster | 72 | 2.64 | 2005 |
Heavy metal | 44 | 5.10 | 2016 | |
Pest | 44 | 4.50 | 2001 | |
Disease | 30 | 2.64 | 1993 | |
Salinization | 8 | 1.97 | 2006 | |
Quality | 135 | 3.25 | 2010 |
Spectral Variables | Publications | Strength | Begin | Burst Year |
---|---|---|---|---|
Reflectance | 361 | 1.61 | 1991 | 2001 |
Vegetation Index | 272 | 2.83 | 1991 | 2005 |
Back-scattering coefficient | 116 | 2.61 | 1997 | 2009 |
Time series | 103 | 2.97 | 2010 | 2018 |
Red edge | 29 | 1.34 | 2003 | 2011 |
Models | Publications | Strength | Begin | Burst Year |
---|---|---|---|---|
Statistical model | 165 | 2.23 | 1992 | 2005 |
Artificial intelligence method | 152 | 2.02 | 1994 | 2009 |
Radiation transfer model | 47 | 1.30 | 1996 | 1999 |
Platforms | Keywords | Publications | Strength | Begin | Burst Year |
---|---|---|---|---|---|
Satellite | Moderate Resolution Imaging Spectrometer (MODIS) | 187 | 3.84 | 2004 | 2012 |
RadarSat | 97 | 2.94 | 1999 | 1999 | |
Landsat | 94 | 1.29 | 1991 | 2013 | |
Sentinel | 39 | 5.43 | 2014 | 2018 | |
Unmanned Aerial Vehicle (UAV) | 60 | 1.69 | 2016 | 2018 | |
Ground | Hyperspectral | 71 | 5.02 | 1998 | 2004 |
Canopy | 66 | 1.55 | 1996 | 2009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Wang, F.; Yi, Q.; Xie, L.; Yao, X. A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021). Remote Sens. 2022, 14, 3607. https://doi.org/10.3390/rs14153607
Xu T, Wang F, Yi Q, Xie L, Yao X. A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021). Remote Sensing. 2022; 14(15):3607. https://doi.org/10.3390/rs14153607
Chicago/Turabian StyleXu, Tianyue, Fumin Wang, Qiuxiang Yi, Lili Xie, and Xiaoping Yao. 2022. "A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021)" Remote Sensing 14, no. 15: 3607. https://doi.org/10.3390/rs14153607
APA StyleXu, T., Wang, F., Yi, Q., Xie, L., & Yao, X. (2022). A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021). Remote Sensing, 14(15), 3607. https://doi.org/10.3390/rs14153607