Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GEDI Data
2.3. ALS Data
2.4. Methods
2.4.1. GEDI Data Preparation
2.4.2. GEDI Orthometric Height Conversion
2.4.3. GEDI Pre-Processing
2.4.4. Statistical Analysis
Kolmogorov–Smirnov (KS)
3. Results
3.1. Proposed KS Uncertainties Removal Method and Absolute Accuracy Assessment
3.2. Comparison with Uncertainties Removal by Quality Flag Parameter and GEDI Sensitivity Beam Data Dispersion
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghaseminik, F.; Aghamohammadi, H.; Azadbakht, M. Land cover mapping of urban environments using multispectral LiDAR data under data imbalance. Remote Sens. Appl. Soc. Environ. 2021, 21, 100449. [Google Scholar] [CrossRef]
- Azadbakht, M.; Fraser, C.S.; Zhang, C. Separability of targets in urban areas using features from fullwave LiDARA data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5367–5370. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. Automatic Segmentation of Raw LIDAR Data for Extraction of Building Roofs. Remote Sens. 2014, 6, 3716–3751. [Google Scholar] [CrossRef] [Green Version]
- Parmehr, E.G.; Amati, M.; Taylor, E.J.; Livesley, S.J. Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban For. Urban Green. 2016, 20, 160–171. [Google Scholar] [CrossRef]
- Neto, E.M.D.C.; Rex, F.E.; Veras, H.F.P.; Moura, M.M.; Sanquetta, C.R.; Käfer, P.S.; Sanquetta, M.N.I.; Zambrano, A.M.A.; Broadbent, E.N.; Corte, A.P.D. Using high-density UAV-Lidar for deriving tree height of Araucaria Angustifolia in an Urban Atlantic Rain Forest. Urban For. Urban Green. 2021, 63, 127197. [Google Scholar] [CrossRef]
- Matkan, A.A.; Hajeb, M.; Sadeghian, S. Road Extraction from Lidar Data Using Support Vector Machine Classification. Photogramm. Eng. Remote Sens. 2014, 80, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Hou, J.; Li, D.; Yang, D.; Han, H.; Bi, X.; Wang, X.; Hinkelmann, R.; Xia, J. Application of LiDAR UAV for High-Resolution Flood Modelling. Water Resour. Manag. 2021, 35, 1433–1447. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Warren, S.; Puestow, T.; Salehi, B.; Brisco, B. Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John’s, NL, Canada. J. Environ. Manag. 2021, 280, 111676. [Google Scholar] [CrossRef]
- Terrone, M.; Piana, P.; Paliaga, G.; D’Orazi, M.; Faccini, F. Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas. ISPRS Int. J. Geo-Inf. 2021, 10, 349. [Google Scholar] [CrossRef]
- Chen, Z.; Devereux, B.; Gao, B.; Amable, G. Upward-fusion urban DTM generating method using airborne Lidar data. ISPRS J. Photogramm. Remote Sens. 2012, 72, 121–130. [Google Scholar] [CrossRef]
- Polat, N.; Uysal, M.; Toprak, A. An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area. Measurement 2015, 75, 50–56. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Garvin, J.; Bufton, J.; Blair, J.; Harding, D.; Luthcke, S.; Frawley, J.; Rowlands, D. Observations of the Earth’s topography from the Shuttle Laser Altimeter (SLA): Laser-pulse Echo-recovery measurements of terrestrial surfaces. Phys. Chem. Earth 1998, 23, 1053–1068. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes Across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102326. [Google Scholar] [CrossRef]
- Spracklen, B.; Spracklen, D. Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sens. 2021, 13, 1233. [Google Scholar] [CrossRef]
- Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Mast, J. Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings. J. Archaeol. Sci. Rep. 2021, 36, 102811. [Google Scholar] [CrossRef]
- Ni, W.; Zhang, Z.; Sun, G. Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas. J. Remote Sens. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Roy, D.P.; Kashongwe, H.B.; Armston, J. The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Tan, P.; Zhu, J.; Fu, H.; Wang, C.; Liu, Z.; Zhang, C. Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data. Sensors 2020, 20, 7304. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.S.; Frappart, F.; Zribi, M. Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sens. 2020, 12, 2714. [Google Scholar] [CrossRef]
- Hofton, M.; Blair, B.; Story, S.; Yi, D. Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. Available online: https://gedi.umd.edu/data/documents/ (accessed on 1 September 2019).
- Quiros, E.; Polo, M.-E.; Fragoso-Campon, L. GEDI Elevation Accuracy Assessment: A Case Study of Southwest Spain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5285–5299. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Pascual, A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: A showcase in Spain. For. Ecosyst. 2021, 8, 14. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef]
- Zandbergen, P.A. Characterizing the error distribution of lidar elevation data for North Carolina. Int. J. Remote Sens. 2011, 32, 409–430. [Google Scholar] [CrossRef]
- Oksanen, J.; Sarjakoski, T. Uncovering the statistical and spatial characteristics of fine toposcale DEM error. Int. J. Geogr. Inf. Sci. 2006, 20, 345–369. [Google Scholar] [CrossRef]
- Fisher, P. Improved Modeling of Elevation Error with Geostatistics. GeoInformatica 1998, 2, 215–233. [Google Scholar] [CrossRef]
- López-Vázquez, C. Improving the Elevation Accuracy of Digital Elevation Models: A Comparison of Some Error Detection Procedures. Trans. GIS 2000, 4, 43–64. [Google Scholar] [CrossRef]
- Bonin, O.; Rousseaux, F. Digital Terrain Model Computation from Contour Lines: How to Derive Quality Information from Artifact Analysis. GeoInformatica 2005, 9, 253–268. [Google Scholar] [CrossRef]
- Governo do Distrito Federal (GDF). Zoneamento Ecológico-Econômico do Distrito Federal (ZEE/DF): Matriz Socioeconômica; GDF: Brasília, Brazil, 2017. Available online: http://www.zee.df.gov.br/ (accessed on 1 September 2019).
- Luthcke, S.B.; Rebold, T.; Thomas, T.; Pennington, T. Algorithm Theoretical Basis Document (ATBD) for GEDI Waveform Geolocation for L1 and L2 Products; Goddard Space Center: Greenbelt, MD, USA, 2019. Available online: https://lpdaac.usgs.gov/documents/579/GEDI__WFGEO_ATBD_v1.0.pdf (accessed on 1 September 2019).
- Tang, H.; Armston, J. Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. Available online: https://lpdaac.usgs.gov/documents/588/GEDI_FCCVPM_ATBD_v1.0.pdf (accessed on 1 September 2019).
- Nicácio, E.; Dalazoana, R. Comparison between absolute and relative approaches in altimetric determinations based on GNSS observations and Global Geopotencial Models. Rev. Bras. Cartogr. 2018, 70, 1–39. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9780470454619. [Google Scholar]
- Czajlik, Z.; Árvai, M.; Mészáros, J.; Nagy, B.; Rupnik, L.; Pásztor, L. Cropmarks in Aerial Archaeology: New Lessons from an Old Story. Remote Sens. 2021, 13, 1126. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 13–14. [Google Scholar]
- Farrell, P.J.; Rogers-Stewart, K. Comprehensive study of tests for normality and symmetry: Extending the Spiegelhalter test. J. Stat. Comput. Simul. 2006, 76, 803–816. [Google Scholar] [CrossRef]
- Gdulová, K.; Marešová, J.; Moudrý, V. Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment. Remote Sens. Environ. 2020, 241, 111724. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Boucher, P.; Hancock, S.; Orwig, D.; Duncanson, L.; Armston, J.; Tang, H.; Krause, K.; Cook, B.; Paynter, I.; Li, Z.; et al. Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation. Remote Sens. 2020, 12, 1304. [Google Scholar] [CrossRef] [Green Version]
- Dial, R.; Chaussé, P.; Allgeier, M.; Smeltz, T.; Golden, T.; Day, T.; Wong, R.; Andersen, H.-E. Estimating Net Primary Productivity (NPP) and Debris-Fall in Forests Using Lidar Time Series. Remote Sens. 2021, 13, 891. [Google Scholar] [CrossRef]
- Junior, J.A.S.; Pacheco, A.D.P. Avaliação de incêndio em ambiente de Caatinga a partir de imagens Landsat-8, índice de vegetação realçado e análise por componentes principais. Ciência Florest. 2021, 31, 417–439. [Google Scholar] [CrossRef]
- Wang, T.; Yu, P.; Wu, Z.; Lu, W.; Liu, X.; Li, Q.P.; Huang, B. Revisiting the Intraseasonal Variability of Chlorophyll-a in the Adjacent Luzon Strait with a New Gap-Filled Remote Sensing Data Set. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4201311. [Google Scholar] [CrossRef]
- Contador, T.M.; Alcântara, E.; Rodrigues, T.; Park, E. Remote sensing of water transparency variability in the Ibitinga reservoir during COVID-19 lockdown. Remote Sens. Appl. Soc. Environ. 2021, 22, 100511. [Google Scholar] [CrossRef]
- Luiz, A.J.B.; de Lima, M.A. Application of the kolmogorov-smirnov test to compare greenhouse gas emissions over time. Rev. Bras. Biom. 2021, 39, 60–70. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Kuriqi, A.; Siddiqui, S.; Gagnon, A.; Lu, L.; Linh, N.T.T.; Pham, Q.B. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sens. 2021, 13, 2053. [Google Scholar] [CrossRef]
- Baier, G.; He, W.; Yokoya, N. Robust Nonlocal Low-Rank SAR Time Series Despeckling Considering Speckle Correlation by Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7942–7954. [Google Scholar] [CrossRef]
- Broadwater, J.B.; Chellappa, R. Adaptive Threshold Estimation via Extreme Value Theory. IEEE Trans. Signal Process. 2010, 58, 490–500. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Debrunner, V.; Rabin, R. Texture-based segmentation of satellite weather imagery. IEEE Int. Conf. Image Process. 2000, 2, 732–735. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, F.J.; Mills, J.P. Accuracy assessment of lidar-derived digital elevation models. Photogramm. Rec. 2008, 23, 148–169. [Google Scholar] [CrossRef]
- Giménez, M.G.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Becek, K. Investigation of elevation bias of the SRTM-C and X-band digital elevation models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 105–110. [Google Scholar]
Metrics | GEDI Source | Description |
---|---|---|
Quality flag | L2A | Quality assessment parameter related to good adjustment between energy, sensitivity, amplitude, and real-time surface tracking. The value “1” means usable information in GEDI data. |
Sensitivity | L2A | Maximum canopy cover throughout, the GEDI signal can detect the ground. This ancillary information is concerned with the signal-to-noise ratio. |
Elev_lowestmode | L2A | Elevation of center of lowest mode (ELM) relative to WGS84 ellipsoid. |
GEDI ISS Orbits | Acquisition Dates |
---|---|
GEDI02_A_2019153141419_O02667_T05383_02_001_01.h5 | 2 June 2019 |
GEDI02_A_2019161000303_O02782_T04978_02_001_01.h5 | 10 June 2019 |
GEDI02_A_2019226215413_O03805_T02285_02_001_01.h5 | 14 August 2019 |
GEDI02_A_2019268053258_O04446_T02132_02_001_01.h5 | 25 September 2019 |
GEDI02_A_2019279121858_O04621_T02690_02_001_01.h5 | 6 October 2019 |
GEDI02_A_2019302032210_O04972_T01114_02_001_01.h5 | 29 October 2019 |
GEDI02_A_2019317100329_O05209_T00709_02_001_01.h5 | 13 November 2019 |
GEDI02_A_2019328165040_O05384_T03960_02_001_01.h5 | 24 November 2019 |
GEDI02_A_2020103220644_O07558_T00709_02_001_01.h5 | 12 April 2020 |
GEDI02_A_2020123141942_O07863_T03555_02_001_01.h5 | 2 May 2020 |
GEDI02_A_2020162101244_O08465_T05536_02_001_01.h5 | 10 June 2020 |
GEDI02_A_2020209042759_O09190_T04978_02_001_01.h5 | 27 July 2020 |
GEDI02_A_2020217012015_O09312_T02285_02_001_01.h5 | 4 August 2020 |
Absolute Thresholds |dh| | Number of GEDI Footprints | Calculated KS | RMSE (m) | |
---|---|---|---|---|
10 m interval | <100 m | 3710 | 0.3888 | 8.91 |
<90 m | 3710 | 0.3888 | 8.91 | |
<80 m | 3708 | 0.3869 | 8.67 | |
<70 m | 3696 | 0.3752 | 7.55 | |
<60 m | 3684 | 0.3620 | 6.60 | |
<50 m | 3667 | 0.3381 | 5.41 | |
<40 m | 3638 | 0.2832 | 3.70 | |
<30 m | 3613 | 0.1849 | 2.33 | |
<20 m | 3608 | 0.1607 | 2.13 | |
<10 m | 3590 | 0.1234 | 1.90 | |
1 m interval | <9 m | 3578 | 0.1109 | 1.82 |
<8 m | 3564 | 0.0972 | 1.75 | |
<7 m | 3555 | 0.0891 | 1.71 | |
<6 m | 3534 | 0.0738 | 1.64 | |
<5 m | 3504 | 0.0571 | 1.56 | |
<4 m | 3433 | 0.0373 | 1.42 | |
<3 m | 3325 | 0.0172 | 1.33 | |
<2 m | 2907 | 0.0542 | 1.09 | |
<1 m | 1560 | 0.0737 | 0.58 |
Number of GEDI Footprints | Calculated KS | RMSE (m) | |
---|---|---|---|
Total GEDI dataset | 7619 | 0.3098 | 5946.73 |
Uncertainty removal method by quality flag | 3090 | 0.4965 | 260.46 |
Uncertainty removal method by quality flag after IQR threshold | 2883 | 0.0320 | 1.40 |
Number of GEDI Footprints | RMSE (m) | |
---|---|---|
GEDI group 1 | 502 | 1.32 |
GEDI group 2 | 60 | 3.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, F.L.R.; Guimarães, R.F.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; de Carvalho, O.L.F.; de Lima, T.P.M. Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area. Remote Sens. 2022, 14, 3540. https://doi.org/10.3390/rs14153540
Barbosa FLR, Guimarães RF, de Carvalho Júnior OA, Gomes RAT, de Carvalho OLF, de Lima TPM. Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area. Remote Sensing. 2022; 14(15):3540. https://doi.org/10.3390/rs14153540
Chicago/Turabian StyleBarbosa, Felipe Lima Ramos, Renato Fontes Guimarães, Osmar Abílio de Carvalho Júnior, Roberto Arnaldo Trancoso Gomes, Osmar Luiz Ferreira de Carvalho, and Thyego Pery Monteiro de Lima. 2022. "Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area" Remote Sensing 14, no. 15: 3540. https://doi.org/10.3390/rs14153540
APA StyleBarbosa, F. L. R., Guimarães, R. F., de Carvalho Júnior, O. A., Gomes, R. A. T., de Carvalho, O. L. F., & de Lima, T. P. M. (2022). Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area. Remote Sensing, 14(15), 3540. https://doi.org/10.3390/rs14153540