Assessing Climate Influence on Spatiotemporal Dynamics of Macrophytes in Eutrophicated Reservoirs by Remotely Sensed Time Series
Abstract
:1. Introduction
2. Methods
2.1. Salto Grande Reservoir (Brazil)
2.2. Temporal Datasets
2.2.1. Landsat Image Acquisition
2.2.2. Spatial Segmentation of the Reservoir Based on the Temporal Variance of NDVI
- −
- Reservoir: a single time series of the mean NDVI was used to represent the entire the reservoir.
- −
- Area: twelve time series of the mean NDVI, calculated for each segmented area.
- −
- Compartment: three NDVI time series, referring to the mean calculated from the pixels included in the sectors defined as near dam, reservoir body (middle of the reservoir), and near river.
2.2.3. Climate Data Time Series Generation
2.3. Time Series Analysis
3. Results
3.1. Temporal Relationship of Climatic Variables and NDVI of the Reservoir
3.2. Influence of Climate Variables on NDVI Spatial Variability over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Dar, N.A.; Pandit, A.K.; Ganai, B.A. Factors affecting the distribution patterns of aquatic macrophytes. Limnol. Rev. 2014, 14, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Lettenmaier, D.P.; Alsdorf, D.; Dozier, J.; Huffman, G.J.; Pan, M.; Wood, E.F. Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res. 2015, 51, 7309–7342. [Google Scholar] [CrossRef]
- Shekede, M.D.; Kusangaya, S.; Schmidt, K. Spatio-temporal variations of aquatic weeds abundance and coverage in Lake Chivero, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2008, 33, 714–721. [Google Scholar] [CrossRef]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M. Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: A remote sensing approach. Remote Sens. Environ. 2010, 114, 1998–2010. [Google Scholar] [CrossRef]
- Tena, A.; Vericat, D.; Gonzalo, L.E.; Batalla, R.J. Spatial and temporal dynamics of macrophyte cover in a large regulated river. J. Environ. Manag. 2017, 202, 379–391. [Google Scholar] [CrossRef]
- Coladello, L.F.; Galo, M.L.B.T.; Shimabukuro, M.H.; Ivánová, I.; Awange, J. Macrophytes’ abundance changes in eutrophicated tropical reservoirs exemplified by Salto Grande (Brazil): Trends and temporal analysis exploiting Landsat remotely sensed data. Appl. Geogr. 2020, 121, 102242. [Google Scholar] [CrossRef]
- Jacquin, A.; Sheeren, D.; Lacombe, J.-P. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S3–S10. [Google Scholar] [CrossRef] [Green Version]
- Agutu, N.; Awange, J.; Zerihun, A.; Ndehedehe, C.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Awange, J.L.; Saleem, A.; Sukhadiya, R.; Ouma, Y.O.; Hu, K. Physical dynamics of Lake Victoria over the past 34 years (1984–2018): Is the lake dying? Sci. Total Environ. 2019, 658, 199–218. [Google Scholar] [CrossRef]
- Morgen, B.; Awange, J.L.; Saleem, A.; Hu, K. Understanding vegetation variability and their ‘‘hotspots’’ within Lake Victoria Basin (LVB: 2003–2018). Appl. Geogr. 2020, 122, 102238. [Google Scholar] [CrossRef]
- Powell, S.; Jakeman, A.; Croke, B. Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands? Ecol. Indic. 2014, 45, 486–493. [Google Scholar] [CrossRef]
- Phiri, M.; Shiferaw, Y.A.; Tesfamichael, S.G. Biome-level relationships between vegetation indices and climate variables using time-series analysis of remotely-sensed data. GIScience Remote Sens. 2020, 57, 464–482. [Google Scholar] [CrossRef]
- Fusilli, L.; Collins, M.O.; Laneve, G.; Palombo, A.; Pignatti, S.; Santini, F. Assessment of the abnormal growth of floating macrophytes in Winam Gulf (Kenya) by using MODIS imagery time series. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2013, 20, 33–41. [Google Scholar] [CrossRef]
- Villa, P.; Pinardia, M.; Bolpagnib, R.; Gillierc, J.M.; Zinked, F.N.; Bresciani, M. Assessing macrophyte seasonal dynamics using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018, 216, 230–244. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Santos, M.; Melendez-Pastor, I.; Navarro-Pedreño, J.; Koch, M. Assessing water availability in Mediterranean regions affected by water conflicts through MODIS data time series analysis. Remote Sens. 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Bergier, I.; Assine, M.L.; McGlue, M.M.; Alho, C.R.J.; Silva, A.; Guerreiro, R.L.; Carvalho, J.C. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 2018, 619–620, 1116–1125. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Zhang, S. Performance of three reanalysis precipitation datasets over the Qinling-Daba mountains, Eastern Fringe of Tibetan Plateau, China. Adv. Meteorol. 2019, 2019, 7698171. [Google Scholar] [CrossRef] [Green Version]
- Awange, J. Lake Victoria Monitored from Space; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Awange, J. The Nile Waters Weighed from Space; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Awange, J. Food Insecurity & Hydroclimate in Greater Horn of Africa; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Yasarer, L.M.W.; Sturm, B.S.M. Potential impacts of climate change on reservoir services and management approaches. Lake Reserv. Manag. 2015, 32, 13–26. [Google Scholar] [CrossRef]
- Weather Spark. The Weather Year Round Anywhere on Earth. 2018. Available online: https://weatherspark.com/y/30200/Average-Weather-in-Americana-Brazil-Year-Round (accessed on 16 August 2021).
- Tanaka, R.H.; Controle de Plantas Aquáticas no Reservatório de Americana. CPFL Geração de Energia. 2009. Available online: https://docplayer.com.br/8539567-Controle-de-plantas-aquaticas-no-reservatorio-de-americana-robson-hitoshi-tanaka-cpfl-geracao-de-energia.html (accessed on 2 December 2021).
- De Jong, R.; Bruin, S.; Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in global vegetation activity trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Eastman, J.R.; Fulk, M. Long sequence time series evaluation using standardized principal components. Photogramm. Eng. Remote Sens. 1993, 59, 1307–1312. [Google Scholar]
- Han, S.; Liu, B.; Shi, C.; Liu, Y.; Qiu, M.; Sun, S. Evaluation of CLDAS and GLDAS Datasets for near-surface air temperature over major land areas of China. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Watts, L.; Laffan., S.W. Sensitivity of the BFAST algorithm to MODIS satellite and vegetation index. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Rieser, R.D.; Kuhn, M.; Pail, R.; Anjasmara, I.M.; Awange, J. Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust. J. Earth Sci. 2010, 57, 887–900. [Google Scholar] [CrossRef]
- Williams, D.M. Time Series Analysis of Vegetation Dynamics and Burn Scar Mapping at Smoky Hill Air National Guard Range, Kansas Using Moderate Resolution Satellite Imagery. Master’s Thesis, Department of Geography, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA, 2016. [Google Scholar]
- Watts, L.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 2014, 154, 234–245. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Li, Q.; Gao, J.; Zhai, S.; Zhou, Y.; Cheng, Y. Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China. Sci. Total Environ. 2019, 651, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Norrulashikin, S.M.; Yusof, F.; Kane, I.L. Instantaneous causality approach to meteorological variables bond. In Advances in Industrial and Applied Mathematics, Proceedings of the 23rd Malaysian National Syposium of Mathematical Sciences, Johor Bahru, Malaysia, 24–26 November 2015; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar]
- Mushtaq, R. Augmented Dickey Fulley Test. 2011. Available online: http://ssrn.com/abstract=1911068 (accessed on 2 December 2021).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Sá, E.A.S.; Moura, C.N.; Padilha, V.L.; Campos, C.G.C. Trends in daily precipitation in highlands region of Santa Catarina, southern Brazil. Ambiente Água Interdiscip. J. Appl. Sci. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Carlowicz, M.; Schollaert, S. El Niño. 2017. Available online: http://earthobservatory.nasa.gov/features/ElNino (accessed on 2 December 2021).
Climate Variable | Description | Unit |
---|---|---|
Air Temperature | Temperature of the air measured at a height of 1.5 m above terrestrial surface. | Celsius (°C) |
Precipitable Water | Total water vapor in atmosphere contained in a unitary section column between any two levels of surface, usually the top of atmosphere and terrestrial surface. It is the estimate of potential rain in a determined region. | kg/m3 |
Meridional and Zonal Wind | The horizontal air movement relative to the terrestrial surface generated by atmospheric pressure gradients. Components of wind are direction, speed, and force it exerts on a determined object:
| m/s |
Variable Cause | Lags Used | Variable GC NDVI p (<F) |
---|---|---|
Air Temperature | 1, 2, 3, 4 | 0.0001 |
Meridional Wind | 1 | 0.0006 |
Zonal Wind | 1 | 0.0030 |
Precipitable Water | 1, 2, 3, 4 | 0.0086 |
Compartment | Time Series | Climate Variables | |||
---|---|---|---|---|---|
Air Temperature | Meridional Wind | Zonal Wind | Precipitable Water | ||
Near dam | Original | 0.1641 | −0.0709 | −0.1208 | 0.1194 |
Trend | 0.0394 | −0.2068 | −0.0369 | 0.0463 | |
Seasonality | 0.7695 | −0.0175 | −0.0540 | 0.7240 | |
Reservoir body | Original | −0.1902 | 0.2356 | 0.0163 | −0.3120 |
Trend | 0.1461 | −0.2759 | 0.1291 | 0.1039 | |
Seasonality | −0.5950 | 0.4526 | −0.1424 | −0.7694 | |
Near river | Original | 0.1625 | −0.3125 | 0.1318 | 0.1474 |
Trend | 0.1621 | −0.2870 | 0.1614 | 0.1072 | |
Seasonality | 0.0972 | −0.4898 | 0.1429 | 0.4000 |
Compartment | Air Temperature | Meridional Winds | Zonal Winds | Precipitable Water | ||||
---|---|---|---|---|---|---|---|---|
Lags | p-Value | Lags | p-Value | Lags | p-Value | Lags | p-Value | |
I | 1, 2, 3, 4 | 0.007 | 1 | 0.007 | 1 | 0.04 | 1, 2, 3, 4 | 0.03 |
II | 1, 2, 3, 4 | 0.000 | 1 | 0.008 | 1 | 0.03 | 1, 2, 3, 4 | 0.04 |
III | 1, 2, 3, 4 | 0.05 | 1, 2, 3, 4 | 0.55 | 1, 2, 3, 4 | 0.88 | 1, 2, 3, 4 | 0.02 |
Air Temperature | Meridional Wind | Zonal Wind | Precipitable Water | |||||
---|---|---|---|---|---|---|---|---|
Lags | p-Value | Lags | p-Value | Lags | p-Value | Lags | p-Value | |
Area 1 | 1, 2, 3, 4 | 0.01 | 1, 2, 3 | 0.001 | 1, 2, 3, 4 | 0.05 | 1, 2, 3, 4 | 0.003 |
Area 2 | 1, 2, 3, 4 | 0.177 | 1, 2, 3 | 0.047 | 1 | 0.04 | 1, 2, 3, 4 | 0.339 |
Area 3 | 1, 2, 3, 4 | 0.004 | 1, 2, 3 | 0.016 | 1, 2, 3, 4 | 0.647 | 1, 2, 3, 4 | 0.009 |
Area 4 | 1, 2, 3, 4 | 0.015 | 1, 2, 3, 4 | 0.146 | 1, 2, 3, 4 | 0.839 | 1, 2, 3, 4 | 0.206 |
Area 5 | 1, 2, 3, 4 | 0.000 | 1 | 0.036 | 1, 2, 3, 4 | 0.240 | 1, 2, 3, 4 | 0.001 |
Area 6 | 1, 2, 3, 4 | 0.084 | 1 | 0.023 | 1, 2, 3, 4 | 0.250 | 1, 2, 3, 4 | 0.068 |
Area 7 | 1, 2, 3, 4 | 0.000 | 1 | 0.003 | 1 | 0.002 | 1, 2, 3, 4 | 0.000 |
Area 8 | 1, 2, 3, 4 | 0.000 | 1 | 0.006 | 1, 2, 3, 4 | 0.004 | 1, 2, 3, 4 | 0.000 |
Area 9 | 1, 2, 3, 4 | 0.000 | 1 | 0.035 | 1 | 0.030 | 1, 2, 3, 4 | 0.000 |
Area 10 | 1, 2, 3, 4 | 0.008 | 1, 2, 3, 4 | 0.008 | 1 | 0.021 | 1, 2, 3, 4 | 0.014 |
Area 11 | 1, 2, 3, 4 | 0.263 | 1, 2, 3, 4 | 0.7177 | 1, 2, 3, 4 | 0.781 | 1, 2, 3, 4 | 0.086 |
Area 12 | 1, 2, 3, 4 | 0.000 | 1, 2, 3, 4 | 0.009 | 1, 2, 3, 4 | 0.652 | 1, 2, 3, 4 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coladello, L.F.; Trindade Galo, M.d.L.B.; Shimabukuro, M.H.; Ivánová, I.; Awange, J. Assessing Climate Influence on Spatiotemporal Dynamics of Macrophytes in Eutrophicated Reservoirs by Remotely Sensed Time Series. Remote Sens. 2022, 14, 3282. https://doi.org/10.3390/rs14143282
Coladello LF, Trindade Galo MdLB, Shimabukuro MH, Ivánová I, Awange J. Assessing Climate Influence on Spatiotemporal Dynamics of Macrophytes in Eutrophicated Reservoirs by Remotely Sensed Time Series. Remote Sensing. 2022; 14(14):3282. https://doi.org/10.3390/rs14143282
Chicago/Turabian StyleColadello, Leandro Fernandes, Maria de Lourdes Bueno Trindade Galo, Milton Hirokazu Shimabukuro, Ivana Ivánová, and Joseph Awange. 2022. "Assessing Climate Influence on Spatiotemporal Dynamics of Macrophytes in Eutrophicated Reservoirs by Remotely Sensed Time Series" Remote Sensing 14, no. 14: 3282. https://doi.org/10.3390/rs14143282
APA StyleColadello, L. F., Trindade Galo, M. d. L. B., Shimabukuro, M. H., Ivánová, I., & Awange, J. (2022). Assessing Climate Influence on Spatiotemporal Dynamics of Macrophytes in Eutrophicated Reservoirs by Remotely Sensed Time Series. Remote Sensing, 14(14), 3282. https://doi.org/10.3390/rs14143282