Automatic Extraction of Potential Landslides by Integrating an Optical Remote Sensing Image with an InSAR-Derived Deformation Map
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. InSAR Technique
2.3.2. Object-Based Landslide Extraction
- (a)
- Segmentation
- (b)
- Pre-selection of features
- (c)
- Classification
- (d)
- Omissive landslide area extraction
2.3.3. Accuracy Assessment
3. Results
3.1. InSAR-Derived Deformation Map
3.2. Segmentation
3.3. Classification
3.3.1. Landslide Identification in Small Regions
- (a)
- JPZ landslide
- (b)
- SLT landslide
3.3.2. Landslide Identification in the Second Region (Validation Region)
4. Discussion
4.1. Segmentation
4.2. Importance of Deformation Features for Identification of a Potential Landslide
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.-H. Remote Sensing for Landslide Survey, Monitoring and Evaluation. Remote Sens. Land Resour. 2007, 19, 10–15. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, C.; Chen, H.; Ren, J.; Zhu, C. Investigation on Catastrophic Landslide of January 11, 2013 at Zhaojiagou, Zhenxiong County, Yunnan Province. J. Eng. Geol. 2013, 21, 6–15. [Google Scholar]
- Hervás, J.; Bobrowsky, P. Mapping: Inventories, susceptibility, hazard and risk. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 321–349. ISBN 978-3-540-69966-8. [Google Scholar]
- Chigira, M.; Duan, F.; Yagi, H.; Furuya, T. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics. Landslides 2004, 1, 203–209. [Google Scholar] [CrossRef]
- Razak, K.A.; Straatsma, M.W.; van Westen, C.J.; Malet, J.-P.; de Jong, S.M. Airborne Laser Scanning of Forested Landslides Characterization: Terrain Model Quality and Visualization. Geomorphology 2011, 126, 186–200. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Moeyersons, J.; Nyssen, J.; Van Beek, L. The Effectiveness of Hillshade Maps and Expert Knowledge in Mapping Old Deep-Seated Landslides. Geomorphology 2005, 67, 351–363. [Google Scholar] [CrossRef]
- Rosin, P.L.; Hervás, J. Remote Sensing Image Thresholding Methods for Determining Landslide Activity. Int. J. Remote Sens. 2005, 26, 1075–1092. [Google Scholar] [CrossRef] [Green Version]
- Borghuis, A.M.; Chang, K.; Lee, H.Y. Comparison between Automated and Manual Mapping of Typhoon-triggered Landslides from SPOT-5 Imagery. Int. J. Remote Sens. 2007, 28, 1843–1856. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L. Using Multi-Temporal Remote Sensor Imagery to Detect Earthquake-Triggered Landslides. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 487–495. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-Oriented Mapping of Landslides Using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Bruzzone, L.; Bovolo, F. A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images. Proc. IEEE 2012, 101, 609–630. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising Spectral, Spatial and Morphometric Properties of Landslides for Semi-Automatic Detection Using Object-Oriented Methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Rau, J.-Y.; Jhan, J.-P.; Rau, R.-J. Semiautomatic Object-Oriented Landslide Recognition Scheme from Multisensor Optical Imagery and DEM. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1336–1349. [Google Scholar] [CrossRef]
- Pradhan, B.; Jebur, M.N.; Shafri, H.Z.M.; Tehrany, M.S. Data Fusion Technique Using Wavelet Transform and Taguchi Methods for Automatic Landslide Detection from Airborne Laser Scanning Data and Quickbird Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1610–1622. [Google Scholar] [CrossRef]
- Chen, T.; Trinder, J.C.; Niu, R. Object-Oriented Landslide Mapping Using ZY-3 Satellite Imagery, Random Forest and Mathematical Morphology, for the Three-Gorges Reservoir, China. Remote Sens. 2017, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Christaras, B. Object-Based Analysis Using Unmanned Aerial Vehicles (UAVs) for Site-Specific Landslide Assessment. Remote Sens. 2020, 12, 1711. [Google Scholar] [CrossRef]
- Han, Y.; Wang, P.; Zheng, Y.; Yasir, M.; Xu, C.; Nazir, S.; Hossain, M.S.; Ullah, S.; Khan, S. Extraction of Landslide Information Based on Object-Oriented Approach and Cause Analysis in Shuicheng, China. Remote Sens. 2022, 14, 502. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting Seasonal Landslide Movement within the Cascade Landslide Complex (Washington) Using Time-Series SAR Imagery. Remote Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, B. Application of InSAR Techniques to an Analysis of the Guanling Landslide. Remote Sens. 2017, 9, 1046. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Liao, M.; Li, M.; Zhang, L.; Cunningham, C. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China. Remote Sens. 2016, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, C.; Zhang, Q.; Peng, J.; Zhu, W.; Lu, Z. Multi-Temporal Loess Landslide Inventory Mapping with C-, X-and L-Band SAR Datasets—A Case Study of Heifangtai Loess Landslides, China. Remote Sens. 2018, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric Point Target Analysis for Deformation Mapping. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. In Proceedings of the (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 7, pp. 4362–4364. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers: A new persistent Scatterers method. Geophys. Res. Lett. 2004, 31, 10029–10034. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z. Deformation Rate Estimation on Changing Landscapes Using Temporarily Coherent Point InSAR. In Proceedings of the Fringe Conference Proceedings, Vancouver, BC, Canada, 10–12 August 2012. [Google Scholar]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The New Landslide Inventory of Tuscany (Italy) Updated with PS-InSAR: Geomorphological Features and Landslide Distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Necula, N.; Niculiță, M.; Fiaschi, S.; Genevois, R.; Riccardi, P.; Floris, M. Assessing Urban Landslide Dynamics through Multi-Temporal InSAR Techniques and Slope Numerical Modeling. Remote Sens. 2021, 13, 3862. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Samsonov, S.; Yang, C.; Wang, M.; Tomás, R. Three-Dimensional and Long-Term Landslide Displacement Estimation by Fusing C-and L-Band SAR Observations: A Case Study in Gongjue County, Tibet, China. Remote Sens. Environ. 2021, 267, 112745. [Google Scholar] [CrossRef]
- Hölbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sens. 2012, 4, 1310–1336. [Google Scholar] [CrossRef] [Green Version]
- Plank, S.; Twele, A.; Martinis, S. Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data. Remote Sens. 2016, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Wang, Y.; Xu, J.; Nishyirimbere, A.; Li, Z. Geo-Hazard Detection and Monitoring Using SAR and Optical Images in a Snow-Covered Area: The Menyuan (China) Test Site. ISPRS Int. J. Geo-Inf. 2017, 6, 293. [Google Scholar] [CrossRef] [Green Version]
- Bouali, E.H.; Oommen, T.; Escobar-Wolf, R. others Evidence of Instability in Previously-Mapped Landslides as Measured Using Gps, Optical, and Sar Data between 2007 and 2017: A Case Study in the Portuguese Bend Landslide Complex, California. Remote Sens. 2019, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, Z.; Abdi, O.; Buchroithner, M. A Synergetic Analysis of Sentinel-1 and-2 for Mapping Historical Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests. Remote Sens. 2019, 11, 2300. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, C. Comprehensive Application and Study of Machine Learning in Susceptibility Evaluation of Shallow Landslides. Ph.D. Thesis, Jilin University, Changchun, China, 2021. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the Quality of Landslide Susceptibility Models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal Landslide Susceptibility Zonation Based on Multiple Forecasts. Geomorphology 2010, 114, 129–142. [Google Scholar] [CrossRef]
- Sterlacchini, S.; Ballabio, C.; Blahut, J.; Masetti, M.; Sorichetta, A. Spatial Agreement of Predicted Patterns in Landslide Susceptibility Maps. Geomorphology 2011, 125, 51–61. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.; Rahman, R.M. Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Peng, S.; Zheng, D.; Duan, G.; Wei, G. Surface Deformation Characteristics and Underground Drainage Effect of Jinpingzi Landslide near Wudongde Hydropower Station. Water Resour. Hydropower Eng. 2021, 52, 146–158. [Google Scholar]
- Varnes, D.J. Landslide Types and Processes. Landslides-Invesitg. Mitig. 1996, 247, 36–75. [Google Scholar]
- Liu, W.; Wang, M.; Zhu, S.; Yu, T.; Huang, X.; Song, B.; Jiang, Y.; Sun, Y. An Analysis on Chain Characteristics of Highstand Geological Disasters in High Mountains and Extremely High Mountains Based on Optical Remote Sensing Technology: A Case Study of Representative Large Landslides in Upper Reach of Jinsha River. Chin. J. Geol. Hazard Control 2021, 32, 29–39. [Google Scholar] [CrossRef]
- Zhu, S.; Yin, Y.; Wang, M.; Zhu, M.; Wang, C.; Wang, W.; Li, J.; Zhao, H. Instability Mechanism and Mitigation Countermeasures of Long Run-out Landslide at High Location in Jinshajiang Suture: A Case Study of the Sela Landslide in Jinsha River, Tibet. Chin. J. Geotech. Eng. 2021, 43, 688–697. [Google Scholar]
- Rahman, R.; Saha, S.K. Multi-Resolution Segmentation for Object-Based Classification and Accuracy Assessment of Land Use/Land Cover Classification Using Remotely Sensed Data. J. Indian Soc. Remote Sens. 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Burnett, C.; Blaschke, T. A Multi-Scale Segmentation/Object Relationship Modelling Methodology for Landscape Analysis. Ecol. Model. 2003, 168, 233–249. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhao, C. Semiautomatic Object-oriented Loose Landslide Recognition based on High Resolution Remote Sensing Images in Heifangtai, Gansu. J. Catastrophology 2017, 32, 210–215. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, X.; Ding, H.; Josef, S.; Xiong, L.; Na, J.; Tang, G. Extraction of Terraces on the Loess Plateau from High-Resolution DEMs and Imagery Utilizing Object-Based Image Analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Mao, D.; Wang, Z.; Li, H.; Man, W.; Jia, M.; Liu, M.; Zhang, M.; Liu, H. Analysis Crops Planting Structure and Yield Based on GF-1 and Landsat8 OLI Images. Trans. Chin. Soc. Agric. Eng. 2017, 33, 147–156. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Routledge: New York, NY, USA, 1984; Volume 37, pp. 237–251. [Google Scholar] [CrossRef]
- Nussbaum, S.; Menz, G. ECognition image analysis software. In Object-Based Image Analysis and Treaty Verification; Springer: Dordrecht, Netherlands, 2008; pp. 29–39. ISBN 978-1-4020-6960-4. [Google Scholar]
- Lemenkova, P. Topology, Homogeneity and Scale Factors for Object Detection: Application of ECognition Software for Urban Mapping Using Multispectral Satellite Image. arXiv 2018, arXiv:1901.00726. [Google Scholar] [CrossRef]
- Zhang, Q. Landslide Recognition Based on High Resolution Remote Sensing Images in Heifangtai. Master’s Thesis, Chang’an University, Xi’an, China, 2017. [Google Scholar]
- Xie, M.; Hu, M.; Wang, L. Landslide Monitoring by Three-Dimensional Laser Scanner-Case Study of the Displacement Detection of the Jinpingzi Landslide (Southwest, China). Chin. J. Geol. Hazard Control 2013, 24, 85–92. [Google Scholar] [CrossRef]
- Sun, W.; Tian, Y.; Mu, X.; Zhai, J.; Gao, P.; Zhao, G. Loess Landslide Inventory Map Based on GF-1 Satellite Imagery. Remote Sens. 2017, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a Landslide Inventory Map Using Pixel-Based and Object-Oriented Approaches Optimized by Taguchi Method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Blaschke, T.; Feizizadeh, B.; Holbling, D. Object-Based Image Analysis and Digital Terrain Analysis for Locating Landslides in the Urmia Lake Basin, Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4806–4817. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, F.; Qu, W. Landslide Monitoring by Combining of CR-InSAR and GPS Techniques. Adv. Space Res. 2014, 53, 430–439. [Google Scholar] [CrossRef]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and Monitoring of Landslide Displacements by Means of L-Band Satellite SAR Interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
Source | Band | Geometry | Wavelength/mm | Temporal Acquisition | Quantities |
---|---|---|---|---|---|
ALOS/PALSAR-1 | L | ascending | 236.1 | January. 2007–March. 2011 | 20 |
Sentinel-1A | C | ascending | 56.6 | August. 2016–October. 2018 | 56 |
Source | Band | Resolution/m | Wavelength/Central Wavelength/µm | Acquisition Date |
---|---|---|---|---|
QuickBird-02 | panchromatic | 0.61 | 0.61–0.72 | 15 November 2009 |
blue | 2.44 | 0.45–0.52 | ||
green | 0.52–0.66 | |||
red | 0.63–0.69 | |||
near-infrared | 0.76–0.90 | |||
Sentinel-2A | B2 (blue) | 10 | 0.490 | 22 December 2017 |
B3 (green) | 0.560 | |||
B4 (red) | 0.665 | |||
B8 (near-infrared) | 0.842 |
Object-Feature Domain (Quantity) | Feature (Quantity) |
---|---|
Layer features (11) | Mean (9), Brightness (1), (1) |
Texture features (36) | (Contrast (9), Homogeneity (9), Entropy (9), Correlation (9)) |
Geometry features (4) | Shape index (1), Density (1), Area (1), Number of pixels (1) |
User-defined features (2) | NDVI (1), NDWI (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xun, Z.; Zhao, C.; Kang, Y.; Liu, X.; Liu, Y.; Du, C. Automatic Extraction of Potential Landslides by Integrating an Optical Remote Sensing Image with an InSAR-Derived Deformation Map. Remote Sens. 2022, 14, 2669. https://doi.org/10.3390/rs14112669
Xun Z, Zhao C, Kang Y, Liu X, Liu Y, Du C. Automatic Extraction of Potential Landslides by Integrating an Optical Remote Sensing Image with an InSAR-Derived Deformation Map. Remote Sensing. 2022; 14(11):2669. https://doi.org/10.3390/rs14112669
Chicago/Turabian StyleXun, Zhangyuan, Chaoying Zhao, Ya Kang, Xiaojie Liu, Yuanyuan Liu, and Chengyan Du. 2022. "Automatic Extraction of Potential Landslides by Integrating an Optical Remote Sensing Image with an InSAR-Derived Deformation Map" Remote Sensing 14, no. 11: 2669. https://doi.org/10.3390/rs14112669
APA StyleXun, Z., Zhao, C., Kang, Y., Liu, X., Liu, Y., & Du, C. (2022). Automatic Extraction of Potential Landslides by Integrating an Optical Remote Sensing Image with an InSAR-Derived Deformation Map. Remote Sensing, 14(11), 2669. https://doi.org/10.3390/rs14112669