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Abstract: Velocity dictates the destructive potential of a landslide. A combination of synthetic
aperture radar (SAR), optical, and GPS data were used to maximize spatial and temporal coverage
to monitor continuously-moving portions of the Portuguese Bend landslide complex on the Palos
Verdes Peninsula in Southern California. Forty SAR images from the COSMO-SkyMed satellite,
acquired between 19 July 2012 and 27 September 2014, were processed using Persistent Scatterer
Interferometry (PSI). Eight optical images from the WorldView-2 satellite, acquired between 20
February 2011 and 16 February 2016, were processed using the Co-registration of Optically Sensed
Images and Correlation (COSI-Corr) technique. Displacement measurements were taken at GPS
monuments between September 2007 and May 2017. Incremental and average deformations across
the landslide complex were measured using all three techniques. Velocity measured within the
landslide complex ranges from slow (> 1.6 m/year) to extremely slow (< 16 mm/year). COSI-Corr
and GPS provide detailed coverage of m/year-scale deformation while PSI can measure extremely
slow deformation rates (mm/year-scale), which COSI-Corr and GPS cannot do reliably. This case
study demonstrates the applicability of SAR, optical, and GPS data synthesis as a complimentary
approach to repeat field monitoring and mapping to changes in landslide activity through time.
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1. Introduction

The destructive capabilities of a landslide depend on its velocity and proximity to assets deemed
valuable to human livelihood [1]. Unfortunately, many landslides occur in areas that put human life
and societal assets (e.g., homes, infrastructure, transportation networks) at risk [2,3]. It is important
for communities to identify areas susceptible to landslides and perform necessary preventative
measures, which may in some form include spatial identification (e.g., landslide inventory) and
temporal monitoring (e.g., displacement measurements), to establish a community landslide mitigation
plan [4,5]. Observational landslide identification and monitoring can take many forms [6–23]: repeat
mapping expeditions with qualitative descriptions, quantitative field assessments and installation of
in situ monitoring equipment (e.g., inclinometers or GPS monuments), and remote sensing surveys
(terrestrial, aerial, or satellite-based). The authors utilize similar data—the California landslide
inventory [24–27], annual displacement measurements at GPS monuments [28], and two satellite-based
remote sensing techniques: Persistent Scatterer Interferometry (PSI) and Co-registration of Optically
Sensed Images and Correlation (COSI-Corr)—to map and update the extent of recent landslide activity
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(2007–2017) within a landslide complex and create a landslide activity map based on the Cruden and
Varnes [29] landslide velocity scale.

Combining multiple techniques allows for a more robust observational dataset over the area of
interest. Multi-sensor approaches have been utilized in other recent geomorphological studies [30–33].
Typically, a remote sensing approach is combined with a ground-based geodetic or in situ technique:
the former provides relative measurements and extensive spatial and/or temporal dimensions while the
latter allows for absolute measurements and ground-truthing (of remote sensing data). Many previous
landslide studies have proven the efficacy of pairing datasets from a ground-based source with a
remote sensing-based source: GPS measurements have been combined with PSI [34–44] and with
COSI-Corr [45–47]; in situ measurements (e.g., inclinometers) have been combined with PSI [48–53]
and, to a lesser extent, with optical correlation methods, of which COSI-Corr is one [54–56]. In this
case of landslide deformation monitoring and mapping, PSI, COSI-Corr, and GPS measurements are
merged to maximize spatial and temporal coverage but also, as shown in Table 1, to reduce limitations
of a single technique. For example, COSI-Corr and GPS can reliably measure ground deformation rates
in the cm/year to m/year range, but neither have the accuracy to measure sub-cm/year velocity; PSI,
on the other hand, can measure deformation at the mm/year-scale by increasing the signal-to-noise
ratio through image stacking [57,58], but suffers from phase decorrelation at greater displacement
rates [59].

Table 1. Variables to consider prior to mapping and monitoring of landslides using Persistent Scatterer
Interferometry (PSI), Co-registration of Optically Sensed Images and Correlation (COSI-Corr), and GPS.

PSI COSI-Corr GPS

Spatial Distribution of
Data Points

Unknown until processing
complete

Gridded across spatial extent
of input imagery

Installed; must be placed
in areas where not

disturbed by external
factors

Temporal Distribution of
Data

Spans acquisition period of
sensor

Spans acquisition period of
sensor

Spans acquisition period
post-installation

Range of Measurable
Deformation Rates

< 2.5 cm/year (threshold
changes based on data quality,
number of images, and radar

wavelength)

cm/year to m/year cm/year to m/year

Direction(s) of
Measurements

1-dimensional, sensor
line-of-sight

2-dimensional, horizontal
(north-south and east-west)

3-dimensional,
horizontal and vertical

Accuracy 1 mm/year 5–10 cm/year 1–2 cm/year

Sources of Noise

Ionospheric effects, snow
cover, precipitation, changes in

dielectric properties of
materials, vegetation,

systematic noise

Cloud cover, snow cover,
vegetation, drastic changes

in ground surface (e.g.,
construction), systematic

noise

Rapid ground
deformation (destruction
of monuments), external
factors (e.g., humans and

animals)

Measurements
Unavailable

(Decorrelation) or
Unreliable

Dense vegetation, topographic
shadow zones, areas with
rapid ground deformation

Areas beneath clouds, dense
vegetation, topographic

shadow zones

If impacted by sources of
noise listed above

Validation GPS and other
ground-truthing methods

GPS and other
ground-truthing methods

Other ground-truthing
methods (e.g., surveys)

The authors present this approach with a specific focus to update the California landslide inventory
in an area with continuously-moving landslides and high population density. The Portuguese Bend
landslide complex is well-known because of its seemingly endless deformation and destruction of local
assets, mainly transportation infrastructure and residential buildings. The region’s high population
density makes mapping the full extent of these landslides quite difficult since natural geologic features
are paved over and built upon. Thus, the novel approach presented in this paper assists on two
fronts: (1) to quantify maximum landslide velocity with GPS and COSI-Corr in the high hazard regions
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of the landslide complex where deformation is observable, and (2) to quantify and map areas with
extremely slow deformation with PSI (mm/year-scale) near the perimeter of the landslide complex
where residential neighborhoods have expanded to and may be in danger of long-term deformation
or creep.

2. Study Area

An active landslide complex is located on the south-central coast of the Palos Verdes Peninsula
in California. Residential neighborhoods of Rancho Palos Verdes, Rolling Hills, and Rolling Hills
Estates delineate the perimeter of previously mapped landslides. At least eight major landslides form
this complex (Figure 1), including Ancient Portuguese Bend (AnPB), Active Portuguese Bend (AcPB),
Valley View Graben (VVG), Parcel 4 (P4), Abalone Cove (AC), Klondike Canyon (KC), Beach Club (BC),
and Flying Triangle (FT), as mapped by the California Geological Survey [24]. Landslide mapping
was originally performed through analysis of aerial photographs and then validated through field
reconnaissance and topographic map interpretations [25–27]. Landslides were classified based on
specific characteristics using terminology from Varnes [60], Wieczorek [61], Keaton and DeGraff [62],
and Cruden and Varnes [29]. Characteristics include landslide type, thickness, activity (as shown in
Figure 1), movement direction, and confidence of interpretation [24]; see Table 2 for characteristics of
notable landslides.

Table 2. Landslide characteristics.

Landslide Type Thickness
(ft, m) Activity Movement

Direction (azimuth)
Interpretation

Confidence Level

AnPB Rock Slide > 50,
> 15.24

Dormant
Old/Relict 180 Definite

AcPB Rock Slide > 50,
> 15.24 Active/Historic 180 Definite

VVG Rock Slide > 50,
> 15.24

Dormant
Old/Relict 180 Definite

P4 Rock Slide 10–50,
3.05–15.24

Dormant
Old/Relict 180 Definite

AC Rock Slide > 50,
> 15.24 Active/Historic 220 Definite

KC Rock Slide > 50,
> 15.24 Active/Historic 220 Definite

BC Rock Slide > 50,
> 15.24 Active/Historic 220 Definite

FT Rock Slide > 50,
> 15.24 Active/Historic 230 Definite

The landslide complex is sliding south-southwest down the Palos Verdes Hills, a northwest–
southeast trending ridge located north of Rolling Hills and Rolling Hills Estates. All major landslides are
classified as rock slides [24] where the moving mass includes bedrock and younger alluvium, the main
body generally stays intact, and movement can be described as either translational or rotational,
although larger landslides exhibit complex movements (both translational and rotational). The basal
surface of rupture on these deep-seated landslides (>15 m in thickness) typically occurs along bedding
planes of the tuffaceous unit of the Altamira Shale, the oldest member of the middle to upper Miocene
Monterey Formation, parts of which have been altered to bentonite and montmorillonite [63,64].
Relatively impermeable tuff beds rest between clay-altered, highly absorbent bedding planes that
act as a conduit for groundwater (the basal surface of rupture) and studies have observed a direct
correlation between precipitation and landslide activity [24,65–67]. Landslide activity (Figure 1 and
Table 2) was defined by the California Geological Survey using aerial photographs from 1952–1959
and 1994, and field work in the 1990s [24]; it is based on the terminology proposed by Keaton and
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DeGraff [62]. Dormant slides are those that have not moved for at least 100 years—old/relict slides have
not moved in the last 10,000 years. They show evidence of erosion and are covered with vegetation.
Active/Historic slides are those that have occurred recently (since the 1950s) or “within historic time,”
defined as occurring within the last 100 years.

The landslide complex was dormant prior to reactivation in 1956 and possibly caused by two
anthropogenic factors that may have increased groundwater pore pressure, although Kayen et al. [67]
acknowledge a lack of hydrologic data to support this hypothesis. First, Rancho Palos Verdes approved
the construction of Palos Verdes Drive South, a road running parallel to the coastline, which cuts
through the slope toe. Material and fill used for construction were piled nearby, potentially causing
rapid loading. Second, irrigation practices from nearby neighborhoods may have contributed to
elevated groundwater levels [68]. The 1956 reactivation occurred within portions of AcPB. In February
1974, southern AC also began moving [69]. Heavy rainfall in early 1978 accelerated deformation
within the entirety of both AcPB and AC landslides [66]. A 1979 field investigation by Proffer [69]
concluded that short-term instability of AC was caused by increased groundwater levels and long-term
instability by wave erosion of the toe. Eight dewatering wells were installed within the AC landslide
boundary in 1980, significantly mitigating landslide hazard [69]. In 1984, dewatering wells were
also installed in the AcPB landslide [67,68]. Other active landslides in the area were moving by
the early-to-mid-1980s [68,69] and have been continuously moving since, exhibiting accelerated
deformation rates (> 2.6 m/year) during rainy months and decelerated deformation rates (< 1 m/year)
during dry months [65,67]. In recent years, coastline roads (including Palos Verdes Drive South) had
to be repaired, replaced, or rerouted [70] and mitigation of the landslide complex is a continued topic
of debate [71].
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Figure 1. Study area. Inset shows location of Los Angeles County (highlighted in yellow) within the
state of California. Major landslides, colored based on landslide activity [24], are Ancient Portuguese
Bend (AnPB), Active Portuguese Bend (AcPB), Valley View Graben (VVG), Parcel 4 (P4), Abalone Cove
(AC), Klondike Canyon (KC), Beach Club (BC), and Flying Triangle (FT). Boundaries between each
landslide are shown in blue. GPS monuments are displayed as red triangles. Roads are shown as black
lines. Background hillshade produced by [72].
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3. Data and Methodology

Three deformation monitoring techniques—GPS, COSI-Corr, and PSI—have been used to study
the continuously-moving Portuguese Bend Landslide complex. These three techniques were chosen
to complement each other, as described in Table 1. Complete descriptions of the geodetic (GPS) and
remote sensing (COSI-Corr and PSI) data and the methodology used in this case study are provided
in the subsections below. GPS data are used to ground-truth COSI-Corr and PSI displacement and
velocity measurements.

3.1. GPS

GPS surveys within the Portuguese Bend Landslide complex were conducted by Michael McGee,
of McGee Surveying Consulting, on behalf of the City of Rancho Palos Verdes. Sixty-six GPS
monuments were placed in a ~4 km2 area, with a focus on the more active AcPB, KC, BC, and AC
landslides, and partial coverage of AnPB and FT (Figure 1). This GPS survey was a continuation of an
original survey which began in 1994 and included 149 monuments, but 89 monuments were lost or
destroyed, some due to rapid landslide deformation mainly in AcPB [28]. McGee resumed annual
monitoring of all GPS monuments (60 found from 1994 survey and six new) in September 2007 and
continued through May 2017 (most recent dataset available). A subset of monuments (about 30) were
chosen for semiannual monitoring beginning February 2012 and triannual monitoring beginning April
2014. All the information for this project, entitled ‘Portuguese Bend Landslide Monitoring Surveys,’
including project history, datums and reference system, data collection, equipment and processing,
Global Navigation Satellite System (GNSS) network diagram and description, accuracy, and quality
control/quality assurance may be found in a series of reports from the City of Rancho Palos Verdes [28].
These GPS measurements are accurate to 1 cm (in relatively stable areas) and 2 cm (in active areas)
between annual readings [28].

3.2. COSI-Corr

Co-registration of Optically Sensed Images and Correlation (COSI-Corr) is an optical remote
sensing technique and ENVI software module [73,74]. It was originally created to measure ground
deformation from seismic activity with satellite or aerial optical image pairs—a pre-event image
and post-event image [75]. COSI-Corr measures two-dimensional (horizontal) ground deformation
between image pairs, with displacement vectors in the north/south and east/west directions. Although
designed to measure earthquake-induced deformation, COSI-Corr has been successfully used to
measure geomorphological and surficial processes [47,76–79].

Eight WorldView-2 high resolution (50 cm) panchromatic optical images were acquired between
20 February 2011 and 16 February 2016. Images were obtained at an incidence angle of 20◦ in the
450–800 nm spectral range. Operated by DigitalGlobe, images were processed to the map scale
1:12,000 orthorectified level. Full-size WorldView-2 images were cut to only include the spatial extent
covered by the landslides identified in Figure 1 and Table 2 and distributed by ESA through a written
proposal (ID 36617). The final output to COSI-Corr processing is a deformation map which includes
two-dimensional horizontal displacement measurements (north/south and east/west components)
and a signal-to-noise ratio (SNR) at each pixel. SNR values range from 0 (all noise) to 1 (no noise).
This procedure was then repeated for all image pairs and yielded seven deformation maps, which were
then summed to produce a total deformation map.

Although the accuracy of COSI-Corr displacement measurements depends on many factors,
Leprince [80] shares an accuracy estimation based on image pixel size. Leprince [80] states, “The typical
uncertainty on the displacement measurement is on the order of 1/10 of the nominal image pixel
size.” Thus, the accuracy of displacement measurements in a deformation map created with a pair
of WorldView-2 images should be approximately 5 cm. The accuracy of the total deformation map,
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the summation of seven deformation maps from seven pairs of WorldView-2 images, should be
approximately 35 cm.

3.3. PSI

Persistent Scatterer Interferometry (PSI) is a remote sensing technique that measures geophysical
and geometric changes of ground targets using synthetic aperture radar (SAR) image stacks [57,58].
Coherent points, known as persistent scatterers (PS), are identified in every image to produce a point
cloud, and each PS within the point cloud includes enough data to create a displacement-time series.
PSI has been widely used for long-term monitoring of dynamic processes, with many recent studies
focusing on landslides [36,52,81–91].

Forty descending COSMO-SkyMed SAR images (level 1A: single-look complex slant products)
were initially acquired between 19 July 2012 and 27 September 2014 by the Italian Space Agency (ASI).
Images were acquired at a frequency of 9.6 GHz—corresponding wavelength of 3.1 cm (X-band)—in
STRIPMAP HIMAGE mode (~26◦ incidence angle) with a spatial resolution of 3 m. Images were
provided by the European Space Agency (ESA) through a written proposal (ID 31684).

Level 1A products arrive as focused data in slant range, complex form with no Doppler projection,
and include the following pre-processing steps (performed by ASI from Level 0 RAW products):
gain receiver compensation, internal calibration, data focusing, statistics estimation of the output data,
and data formatting into output [92]. COSMO-SkyMed SAR images were processed with the ENVI
+ SARscape PSI software package [93]. The result is a PS point cloud. Every PS in the point cloud
contains the following information: displacement (mm) at each acquisition; average velocity (mm/year);
coherence; location within three-dimensional, geocoded coordinate system (x, y, z); line-of-sight
incidence angle and azimuth direction of SAR signal; original location within slant range coordinate
system (azimuth, range); precision estimates of height (m) and velocity (mm/year).

4. Results and Discussion

4.1. GPS and COSI-Corr: Measuring cm- to m-scale Deformation

Maps illustrating the spatial extent of incremental displacement as measured by 66 GPS stations [28]
between 24 September 2007 and 3 May 2017 are provided in Figure 2. A maximum displacement
> 20 m (average velocity > 2 m/year) was measured at the toe of AcPB. The most active region of the
landslide complex is within the AcPB landslide block, which experienced incremental displacements
> 1.5 m between annual surveys (orange and red arrows in Figure 2). Other regions of the landslide
complex that experienced displacements between 1 m and 1.5 m (light green and yellow arrows in
Figure 2) include AC (Figure 2A,C,D,I), FT (Figure 2A–E), and AnPB (Figure 2A,D) although the latter
is mapped as dormant old/relict (Figure 1).

Average horizontal downslope velocity maps, as measured between eight chronological
WorldView-2 images between 20 February 2011 and 16 February 2016 using COSI-Corr, are provided
in Figure 3. The chronological maps show average horizontal velocity values ranging from 0.5 m/year
to 6.2 m/year. Areas with an average horizontal velocity < 0.5 m/year are transparent and are either
stable or fall within the noise range. These average horizontal velocity results are draped over a 3 m
digital elevation model [72] to illustrate that deformation occurs in the downslope direction.
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Figure 2. Incremental displacement (m) measured through annual GPS surveys from [28]: (A) 24
September 2007–10 December 2008; (B) 10 December 2008–18 November 2009; (C) 18 November
2009–25 October 2010; (D) 25 October 2010–3 October 2011; (E) 3 October 2011–14 September 2012;
(F) 14 September 2012–4 October 2013; (G) 4 October 2013–19 September 2014; (H) 19 September
2014–8 October 2015; (I) 8 October 2015–5 October 2016; (J) 5 October 2016–3 May 2017. Displacement
magnitude shown using color scale (green to red). Displacement direction shown using arrows
(displacement direction unavailable for H, I, and J).
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Figure 3. Incremental average horizontal downslope velocity (m/year) between chronological
Worldview-2 image pairs. (A) 20 February 2011–29 May 2011; (B) 29 May 2011–17 February 2012; (C) 17
February 2012–9 November 2012; (D) 9 November 2012–15 September 2013; (E) 15 September 2013–29
March 2014; (F) 29 March 2014–17 September 2015; (G) 17 September 2015–16 February 2016. AnPB and
AcPB are referenced in (F) and the yellow rectangle delineates the approximate extent of the reference
map provided in Figure 1.

Widespread deformation occurred throughout the Portuguese Bend landslide complex between 20
February 2011 and 29 May 2011 (Figure 3A); this timeframe is also encapsulated in GPS displacement
measurements between 25 October 2010 and 3 October 2011 (Figure 2D). These widespread, relatively
high rates of deformation in early 2011 correlate with a wet rainy season (December 2010 through
March 2011). As shown in Figure 4, precipitation during this period was well above average in
neighboring Los Angeles, California, with a total of 15.15 in of rain.

GPS, COSI-Corr, and precipitation data can be combined to create a unique, descriptive timeline
of annual deformation in and around the Portuguese Bend landslide complex (as shown in Table 3).

GPS and COSI-Corr measurements can also be directly compared when analyzing temporal
changes at a single location in the landslide complex. A velocity time series from the AcPB toe is
provided in Figure 5. AcPB toe maintains a deformation rate between 0.8 and 1.0 m/year from late 2007
through early 2009. Deformation then accelerates to a peak velocity > 1.6 m/year in June 2010. The toe
then experiences a prolonged deceleration to a minimum velocity of ~0.2 m/year in July 2014. GPS and
COSI-Corr data show the deceleration trend, although the latter shows a semi-cyclical fluctuation with
a period of ~18 months. The final GPS and COSI-Corr average velocity points indicate the beginning
of another period of acceleration beginning in December 2015.
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Table 3. Descriptive history of the Portuguese Bend landslide complex (2007–2017).

Year(s) Measured
Deformation Data Source Location of Deformation within Landslide

Complex
Complementary

Figure(s)

2007–2008
> 1.5 m GPS Western and central regions of AcPB and FT 2A

1 m–1.5 m GPS Southeast region of AnPB and north/northwest
regions of AcPB 2A

Relatively
Stable GPS KC and BC 2A

2009
1 m–1.5 m GPS AcPB deformation decreases slightly (compared to

2007–2008) 2B

~1 m GPS Eastern toe of FT 2B

Relatively
Stable GPS AnPB and AC (more stable than 2007–2008); KC

and BC 2B

2010
> 1.5 m GPS Central region of AcPB remains most active with an

increase in deformation since 2009 2C

~1 m GPS Eastern toe of FT 2C

Relatively
Stable GPS AnPB, AC, KC, and BC 2C

2011
> 1 m GPS Western and central AcPB, AC, and FT 2D

> 1 m COSI-Corr February to
May

Widespread instability,
including areas not mapped as

landslides
3A

Relatively
Stable COSI-Corr May to

December

Little significant deformation
outside landslide complex; none

within complex
3B

2012
> 1 m GPS,

COSI-Corr Activity throughout AcPB 2E, 3C

~1 m GPS Eastern toe of FT 2E

Relatively
Stable

GPS,
COSI-Corr AnPB, AC, KC, and BC 2E, 3C

2013
3–4 m COSI-Corr

P4 is most active landslide, with displacement
peaking at ~4 m (September) before decreasing to

~3 m
3D, 3E

> 1.5 m GPS,
COSI-Corr

AcPB remains active, mostly vertical displacement
since COSI-Corr does not capture any deformation

during this time
2F, 3D, 3E

Relatively
Stable

GPS,
COSI-Corr AnPB, AC, KC, and BC 2F, 3D, 3E

2014-2015
0.5 m–3 m GPS,

COSI-Corr

AcPB remains active, mostly vertical displacement
until September 2015 when COSI-Corr measures

horizontal displacement ranging from 0.5 m
(landslide body) to 3 m (landslide head);

2G, 2H, 3G

Relatively
Stable to ~0.5 m

GPS,
COSI-Corr

All landslides adjacent to AcPB stable until
September 2015 when COSI-Corr measures ~0.5 m

displacement in AnPB
2G, 2H, 3G

2016
> 3 m GPS GPS stations within AcPB measure displacement >

3 m at two locations 2I

Relatively
Stable GPS AnPB, AC, KC, and BC 2I

2017
> 3 m GPS GPS stations within AcPB measure displacement >

3 m at two locations 2J

~1 m GPS Toe of AC 2J

Relatively
Stable GPS AnPB and FT 2J
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Figure 4. Precipitation time series for Los Angeles, California between January 2007 and January
2018 [95].

Temporal results across the landslide complex (when plotted like Figure 5) show deformation
patterns identical to those expected from shallow-dipping translational landslides [94]; recall that
landslides in this complex slip along bedding planes dipping at 5◦ south-southwest toward the
ocean. Therefore, most of the deformation will be measured in the horizontal components rather
than the vertical component. At GPS station UB-2, GPS and COSI-Corr measurements show a similar
average velocity time series trend (Figure 5). Remember, COSI-Corr measures deformation in the
two horizontal planes and GPS measures deformation in three dimensions. Thus, if COSI-Corr
measurements equal GPS measurements, as shown in Figure 5, then deformation primarily occurs
nearer the two horizontal planes (north-south, east-west) and there is little or no vertical deformation
in the region. These measurements match previous observations [24–27].
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Figure 5. Average velocity time series with GPS (solid curve) and COSI-Corr (dashed curve) at GPS station
UB-2 located at the toe of AcPB (the most active region of the Portuguese Bend landslide complex).

A comparison of total displacement measured by GPS and COSI-Corr, as shown in Figure 6,
can be used as an accuracy assessment tool. In terms of accuracy, it should be expected that COSI-Corr
measurements are less than or equal to GPS measurements at the same location (as discussed in the
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previous paragraph). As shown in Figure 6, there are five instances (out of 55 total) where COSI-Corr
measurements exceed GPS measurements by at least 0.25 m (i.e., the five plot points and respective error
bars lie below the red 1:1 line in Figure 6). Thus, COSI-Corr measurements at these five GPS stations
may be inaccurate due to additional sources of noise that are not present at the other GPS stations.

Table 4. GPS displacement and COSI-Corr displacement comparison between 2012 and 2016 at 55 GPS
stations (information from Figure 6).

Line of Best Fit Slope Line of Best Fit Intercept R2 Value GPS Error Bars COSI-Corr Error Bars

0.77 0.0133 0.8341 +/- 0.05 m +/- 0.25 m
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4.2. PSI to Measure mm-Scale Deformation

Neither GPS nor COSI-Corr can accurately measure extremely slow deformation of
< 16 mm/year [29], so PSI is required for these measurements. Figure 7 shows PSI average velocity
measurements between 19 July 2012 and 27 September 2014 across the Portuguese Bend landslide
complex. PSI average velocity is measured in the line-of-sight direction (26◦ from nadir, N85◦W),
with negative values indicating ground movement away from the satellite (which corresponds to
downward and/or westward directions). There are five areas of interest that stand out when comparing
PSI results with GPS and COSI-Corr: (1) AcPB Body, (2) AC and AcPB Toe, (3) KC, (4) AnPB, and VVG
Scarp Reactivation, and (5) P4.

AcPB Body. As mentioned before, this is one of the more active areas within the landslide
complex. A lack of PS suggest decorrelation due to rapid deformation (which occurs at a velocity
> 2.5 cm/year). PS that border AcPB exhibit velocity around −8 mm/year. PS presence within AcPB
appear to act as a boundary around high landslide activity areas, which are approximated well by GPS
displacement measurements (yellow, orange, and red arrows in Figure 2).

AC and AcPB Toe. This region also shows high landslide activity (Figures 2 and 3). However,
presence of PS suggests there is no decorrelation due to rapid deformation and, instead, high landslide
activity is localized (e.g., GPS stations are placed in areas with local instability and nearby areas may
not be as unstable, hence PS presence). In fact, there are no PS along the coast (Figure 7), which is
where most GPS monuments are located (see Figures 1 and 2). PS presence in this region once again
act as a boundary to the high landslide activity occurring along the coast.
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KC. Houses in a residential neighborhood in Rancho Palos Verdes were built on the KC landslide,
which was mapped as an active slide (Figure 1). These houses appear to be moving with KC at a
velocity between −6 and −8 mm/year (red PS in Figure 7). PSI velocity values follow a general trend
through this neighborhood: houses undergoing greatest velocity are in the west (atop KC, red PS),
toward the southeast are houses with moderate velocity (approximately −4 mm/year, yellow PS),
and further east are stable houses (green PS).

AnPB and VVG Scarp Reactivation. A region of red and yellow PS highlights a possible
reactivation near the scarp of AnPB and VVG (Figure 7), which has been mapped as a dormant slide.
Previous mapping efforts [24] have interestingly identified three small, historic soil slides (shallow,
< 3 m deep) within AnPB and VVG (small brown areas, Figure 1). PSI results indicate the possibility of
a larger, slow-moving landslide with a triangular shape that mirrors the location of the historic soil
slides. The historic soil slides may be small, surficial slides caused by relatively slow movement of a
larger block. PSI results give a reason to believe there may be an extremely slow reactivation near the
historic scarp of the AnPB and VVG landslides.

P4. This landslide was previously mapped as a dormant slide [24] and has not been studied
in any recent landslide analysis of the Palos Verdes Peninsula. P4 is home to the 400,000 m2 Three
Sisters Reserve, one of ten reserves that make up the Palos Verdes Nature Preserve. COSI-Corr
total horizontal displacement measurements indicate the entire region surrounding P4 is undergoing
significant deformation: an average velocity of 1.20 m/year (2011–2016) and peak velocities exceeding
4 m/year in early 2011 and between November 2012 and March 2014. PSI results support the general
assessment of P4 instability (Figure 7): there are few PS within the P4 (except for relatively stable
points in the south and west), and there is a large areal swath of relatively high-velocity PS (red and
orange, between −5 and −8 mm/year) in the residential neighborhood to the north.
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4.3. Final Landslide Deformation Map

A final landslide deformation map is provided in Figure 8. This map, which segments landslide
activity based on Cruden and Varnes [29] landslide velocity scale, is divided as follows: slow (velocity
> 1.6 m/year), very slow (velocity between 16 mm/year and 1.6 m/year), and extremely slow (velocity <

16 mm/year). Stable areas, those with no sustained deformation throughout the study period, are not
labeled. Additional notes on how PSI, COSI-Corr, and GPS deformation data were converted into the
final landslide deformation map are provided in Table 5.
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Table 5. Landslide activity descriptions based on velocity scale at the Portuguese Bend landslide complex.

Velocity Scale Velocity Range Description of Landslide Activity

Slow >1.6 m/year

Fourteen GPS monuments experienced a velocity > 1.6 m/year for a
portion of the study period. No location within the landslide complex
moved at an average velocity > 1.6 m/year over the entire span of GPS

or COSI-Corr observations.

Very Slow 16 mm/year–1.6 m/year

Portions of the landslide complex that were consistently moving, as
measured by COSI-Corr and GPS. There was typically a lack of PS
presence in these areas since a velocity of 16 mm/year is near the

maximum PS velocity threshold of 25 mm/year.

Extremely Slow <16 mm/year
Velocity < 16 mm/year is below the accuracy of COSI-Corr and GPS

measurements and, therefore, mapping of these areas relied exclusively
on PSI results.

Stable ~0 mm/year
Areas were considered stable if (1) COSI-Corr and GPS measurements

were below the accuracy threshold and (2) PS with a velocity of
~0 mm/year were present.
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4.4. Discussion of Multi-Sensor Approaches for Landslide Monitoring

Previous studies have utilized multi-sensor approaches to monitor landslides. In fact, many of
the publications previously cited in this paper use more than one remote sensor for landslide
monitoring [30–33,36,37,42,43,50–52,54,78,81,83,88,89]. Typically, multiple sensors are used to increase
spatial coverage or measure deformation in three dimensions (e.g., acquisition of ascending and
descending SAR images), to increase temporal coverage (e.g., combining ERS-1/-2 and ENVISAT
images for almost 18 years of observation), or to optimize certain sensor parameters (e.g., X-Band SAR
for high spatial resolution or L-Band SAR for vegetation penetration).

This study takes a novel approach to demonstrate the capabilities of using a multi-sensor approach
(COSI-Corr and SAR along with GPS) to monitor a landslide complex undergoing deformation at
three orders of magnitude: mm-, cm-, and m-scale. This type of application allows for in-depth
landslide monitoring at a site with widespread displacement rates and land uses (residential, industrial,
environmental, etc.) by optimizing the advantages of each technique and minimizing their limitations.

• GPS provides accurate, three-dimensional displacement measurements at a scale ranging from
cm to m. In remote sensing studies, GPS data are used as a source of ground-truthing and
validation. GPS data are spatially limited as measurements are only available as point sources
(e.g., GPS stations).

• COSI-Corr processing of optical images allows for two-dimensional displacement measurements
at a scale like GPS (cm- to m-scale). COSI-Corr provides a major advantage with respect to spatial
coverage, increasing the extent of displacement measurements from point sources (from GPS) to
an area equal to the optical image swath. This technique is affected by noise (Figure 6) and cannot
accurately measure displacements less than 1/10-pixel size of the optical images.

• PSI processing of SAR images allows for one-dimensional (line-of-sight) displacement
measurements at a scale ranging from mm to 1-2 cm. Although PSI cannot measure rapid
deformation, it excels at measuring slow-moving deformation (e.g., landslide creep) especially
over urban areas, which may be difficult to map in the field.

Monitoring landslides at various orders of magnitude can provide an asset for at-risk communities
because almost all types of landslides can be detected. Continuous movement on rotational and
translational slides can be annually monitored by GPS surveys or, preferably, by continuous GPS
stations. These types of landslides can also be monitored through repeat acquisition of optical images
from myriad of sensors on current satellites (e.g., Deimos-2, GeoEye-1, IKONOS, KOMPSAT-2, Landsat,
Pleiades, RapidEye, SPOT, and WorldView-1/-2/-3). Slower moving landslides—such as the initial
stages of rockfalls or topples (possibly, prior to failure), the perimeter of rotational and translational
landslides, or slopes experiencing creep—may be monitored by SAR techniques, such as PSI and
others. There are also many current satellites that provide coverage around the world (e.g., ALOS-2,
COSMO-SkyMed, RADARSAT-2, SAOCOM-1/-2, Sentinel-1, and TerraSAR-X).

5. Conclusions

Continuously-moving landslides, such as the Portuguese Bend landslide complex on the Palos
Verdes Peninsula in Southern California, are ideal locations for multi-sensor monitoring. The premise
is that each technique (PSI, COSI-Corr, and GPS), when analyzed together, provides an advantage
where the others might be limited (see Table 1). Forty COSMO-SkyMed SAR images (2012–2014)
were processed using PSI to measure average velocity, eight WorldView-2 (2011–2016) optical images
were processed using COSI-Corr to measure average horizontal downslope velocity, and 66 GPS
monuments (2007–2017) were used to measure incremental displacement. This approach allowed for
delineation of active zones within the landslide complex (during the study period between 2007 and
2017). A final landslide deformation map was produced (Figure 8), which divides the landslide complex
into three activity categories based on the Cruden and Varnes [29] velocity scale: slow (> 1.6 m/year),
very slow (between 16 mm/year and 1.6 m/year), extremely slow (< 16 mm/year), and stable. Average
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velocity measurements obtained in this study match those of previous studies [65,70] and older
observations [24,66–69,96]. Landslides are a complex natural hazard and it may require the use of all
available resources to fully detect, monitor, understand their geographic and temporal components.
Hopefully one day we can use this information to confidently and accurately predict their occurrence
as well.
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Abbreviations

AC Abalone Cove (Landslide)
AcPB Active Portuguese Bend (Landslide)
AnPB Ancient Portuguese Bend (Landslide)
ASI Italian Space Agency
BC Beach Club (Landslide)
COSI-Corr Co-registration of Optically Sensed Images and Correlation
ESA European Space Agency
FT Flying Triangle (Landslide)
GNSS Global Navigation Satellite System
GPS Global Positioning System
KC Klondike Canyon (Landslide)
P4 Parcel 4 (Landslide)
PS Persistent Scatterers
PSI Persistent Scatterer Interferometry
SAR Synthetic Aperture Radar
VVG Valley View Graben (Landslide)
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