Tracking the Early Movements of Northeast China Cold Vortices Using FY-3D MWTS-2 Observations of Brightness Temperature
Abstract
:1. Introduction
2. MWTS-2 Observations and the ERA5 Reanalysis
3. Limb Correction Method
4. Results
4.1. Limb Correction Results
4.2. MWTS-2 Peak WF Altitudes
4.3. TB Observations of Channels 4 and 6
4.4. Potential Vorticity and Tropopause
5. Discussion
5.1. Vertical Structures of Cutoff Lows
5.2. Tracks of the Cutoff Lows to Form NCCV
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmén, E.; Newton, C.W. Atmospheric Circulation Systems: Their Structure and Physical Interpretation; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Nieto, R.; Gimeno, L.; de al Torre, L.; Ribera, P.; Gallego, D.; García-Herrera, R.; García, J.A.; Nuñez, M.; Redaño, A.; Lorente, J. Climatological Features of Cutoff Low Systems in the Northern Hemisphere. J. Clim. 2005, 18, 3085–3103. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, J.; Hu, C.; Li, J.; Jiao, M. A Review of Definition, Identification and Quantitative Investigation on Northeast Cold Vortex. J. Meteorol. Sci. 2017, 37, 394–402. [Google Scholar]
- Sun, L.; Zheng, X.; Wang, Q. The Climatological Characteristics of Northeast Cold Vortex in China. Q. J. Appl. Meteorol. Chin. 1994, 5, 297–303. [Google Scholar]
- Zhang, L.; Li, Z. A Summary of Research on Cold Vortex over Northeast China. Clim. Environ. Res. Chin. 2009, 14, 218–228. [Google Scholar]
- Liu, G.; Lian, Y.; Yan, P.; Zeng, Y.; Yang, X.; Cao, L. The Objective Recognition and Classification of Northeast Cold Vortex and the Northern Hemisphere Atmospheric Circulation Characters in May to August. Sci. Geogr. Sin. 2015, 35, 1042–1050. [Google Scholar]
- Sun, L. A Study of the Persistence Activity of Northeast Cold Vortex in China. Sci. Atmos. Sin. Chin. 1997, 21, 297–307. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, D. Objective Identification Method and Variation Characteristics of the Northeast China Cold Vortex from May to August of 1979–2018. Acta Meteorol. Sin. 2020, 78, 945–961. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Li, S.; Ding, Z.; Dai, P.; Liu, Y. Recent Advances in Research on Northeast China Cold Vortex. J. Arid Meteorol. 2016, 34, 13–19. [Google Scholar]
- Sun, L.; An, G.; Lian, Y.; Sheng, B.; Tang, X. A Study of the Persistent Activity of North East Cold Vortex in Summer and Its Genral Circulation Anomaly Characteristics. Acta Meteorol. Sin. 2000, 55, 704–714. [Google Scholar] [CrossRef]
- He, J.; Wu, Z.; Jiang, Z.; Miao, C.; Han, G. “Climate Effect” of the Northeast Cold Vortex and Its Influences on Meiyu. Chin. Sci. Bull. Chin. 2006, 51, 2803–2809. [Google Scholar] [CrossRef]
- Miao, C.; Wu, Z.; He, J.; Chi, Y. The Anomalous Features of the Northeast Cold Vortex During the First Flood Period in the Last 50 Years and Its Correlation with Rainfall in South China. Chin. J. Atmos. Sci. 2006, 30, 1249–1256. [Google Scholar]
- Zhong, S.; Wang, D.; Zhang, R.; Liu, Y. Analyses on the Structure Characteristic and Formation Mechanism of the Rainstorm Related to a Cold Vortex System over Northeast China. Plateau Meteorol. 2011, 30, 951–960. [Google Scholar]
- Shen, X.; Zhang, C.; Gao, H.; Wang, L. Classification and Dynamic Composite Analysis of Three Kinds of High Altitude Cold Vortex. Torrential Rain Disasters 2020, 39, 1–9. [Google Scholar]
- Dong, C.; Yang, J.; Zhang, W.; Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Liu, Y.; Cai, B. An Overview of a New Chinese Weather Satellite FY-3A. Bull. Am. Meteorol. Soc. 2009, 90, 1531–1544. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, J.; Dong, C.; Lu, N.; Yang, Z.; Shi, J. General Introduction on Payloads, Ground Segment and Data Application of Fengyun 3A. Front. Earth Sci. 2009, 3, 367–373. [Google Scholar] [CrossRef]
- Schwalb, A. The TIROS-N/NOAA A-G Satellite Series; The National Aeronautics and Space Administration: Washington, DC, USA, 1978; p. 12135.
- Mo, T. Prelaunch Calibration of the Advanced Microwave Sounding Unit-A for NOAA-K. IEEE Trans. Microw. Theory Tech. 1996, 44, 1460–1469. [Google Scholar] [CrossRef] [Green Version]
- Mo, T. Calibration of the Advanced Microwave Sounding Unit-A Radiometers for NOAA-N and NOAA-N’; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA; National Environmental Satellite, Data, and Information Service (NESDIS): Silver Spring, MD, USA, 2002.
- Kim, E.; Lyu, C.-H.J.; Anderson, K.; Vincent Leslie, R.; Blackwell, W.J. S-NPP ATMS Instrument Prelaunch and on-Orbit Performance Evaluation. J. Geophys. Res. Atmos. 2014, 119, 5653–5670. [Google Scholar] [CrossRef] [Green Version]
- Zou, X. Atmospheric Satellite Observations, 1st ed.; Academic Press: New York, NY, USA, 2020; ISBN 978-0-12-820950-9. [Google Scholar]
- Yang, Z.; Zhang, P.; Gu, S.; Hu, X. Capability of Fengyun-3D Satellite in Earth System Observation. J. Meteorol. Res. 2019, 33, 1113–1130. [Google Scholar] [CrossRef]
- Li, J.; Zou, X. A Quality Control Procedure for FY-3A MWTS Measurements with Emphasis on Cloud Detection Using VIRR Cloud Fraction. J. Atmos. Ocean. Technol. 2013, 30, 1704–1715. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Tian, X. Striping Noise Analysis and Mitigation for Microwave Temperature Sounder-2 Observations. Adv. Atmos. Sci. 2019, 36, 711–720. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X.; Yang, S. A Limb Correction Method for the Microwave Temperature Sounder 2 and Its Applications. Adv. Atmos. Sci. 2018, 35, 1547–1552. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X. ATMS- and AMSU-A-Derived Hurricane Warm Core Structures Using a Modified Retrieval Algorithm. J. Geophys. Res. Atmos. 2016, 121, 12630–12646. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zou, X.; Huang, W. Typhoon Warm-Core Structures Derived from FY-3D MWTS-2 Observations. Remote Sens. 2021, 13, 3730. [Google Scholar] [CrossRef]
- Niu, Z.; Zou, X.; Li, D. Northeast China Cold Vortex Observed by FY-3 MWTS-2 and MetOp AMSU-A. J. Geophys. Res. Atmos. 2021, 126, e2021JD035471. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An Update on the RTTOV Fast Radiative Transfer Model (Currently at Version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- U.S. Standard Atmosphere, 1976; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1976.
- Goldberg, M.D.; Crosby, D.S.; Zhou, L. The Limb Adjustment of AMSU-A Observations: Methodology and Validation. J. Appl. Meteorol. Climatol. 2001, 40, 70–83. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.; Goldberg, M.; Liu, X.; Wolf, W.; Tan, C.; Liu, Q. A Methodology to Adjust ATMS Observations for Limb Effect and Its Applications. J. Geophys. Res. Atmos. 2017, 122, 11347–11356. [Google Scholar] [CrossRef]
- Wark, D.Q. Adjustment of TIROS Operational Vertical Sounder Data to a Vertical View; NOAA Technical Report; National Environmental Satellite, Data, and Information Service (NESDIS): Silver Spring, MD, USA, 1993.
- World Meteorological Organization (WMO). Meteorology—A Three-Dimensional Science. WMO Bull. 1957, 6, 134–138. [Google Scholar]
- Chen, D.; Lü, D.; Chen, Z. Simulation of the Stratosphere-Troposphere Exchange Process in a Typical Cold Vortex over Northeast China. Sci. China Earth Sci. 2014, 57, 1452–1463. [Google Scholar] [CrossRef]
- Portmann, R.; Sprenger, M.; Wernli, H. The Three-Dimensional Life Cycles of Potential Vorticity Cutoffs: A Global and Selected Regional Climatologies in ERA-Interim (1979–2018). Weather Clim. Dyn. 2021, 2, 507–534. [Google Scholar] [CrossRef]
- Nieto, R.; Sprenger, M.; Wernli, H.; Trigo, R.M.; Gimeno, L. Identification and Climatology of Cut-off Lows near the Tropopause. Ann. N. Y. Acad. Sci. 2008, 1146, 256–290. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Zhou, X.; Zheng, Y. Vorticity, Potential Vorticity and Stratospheric Dry Intrusion: Origin, Application and Misuse of Potential Vorticity Concept. Meteorol. Mon. 2012, 38, 28–40. [Google Scholar]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-Troposphere Exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Ertel, H. Ein neuer hydrodynamischer Erhaltungssatz. Naturwissenschaften 1942, 30, 543–544. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Mcintyre, M.E.; Robertson, A.W. On the Use and Significance of Isentropic Potential Vorticity Maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Reichler, T.; Dameris, M.; Sausen, R. Determining the Tropopause Height from Gridded Data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
Channel | Frequency (GHz) | NEDT (K) | Peak WF Altitude (hPa) | Predictor Channels |
---|---|---|---|---|
1 | 50.3 | 1.2 | Surface | 1,2,3 |
2 | 51.76 | 0.75 | Surface | 1,2,3 |
3 | 52.8 | 0.75 | 950 | 2,3,4 |
4 | 53.596 | 0.75 | 700 | 3,4,5 |
5 | 54.4 | 0.75 | 400 | 4,5,6 |
6 | 54.94 | 0.75 | 250 | 5,6 |
7 | 55.5 | 0.75 | 200 | 7,8,9 |
8 | 57.29 | 0.75 | 100 | 8,9 |
9 | ± 0.217 | 1.2 | 50 | 8,9,10 |
10 | ± 0.322 ± 0.048 | 1.2 | 25 | 9,10,11 |
11 | ± 0.322 ± 0.022 | 1.7 | 10 | 10,11 |
12 | ± 0.322 ± 0.01 | 2.4 | 5 | 10,11,12 |
13 | ± 0.322 ± 0.0045 | 3.6 | 2 | 12,13 |
Level No. | Pressure (hPa) | Level No. | Pressure (hPa) | Level No. | Pressure (hPa) |
---|---|---|---|---|---|
1 | 1 | 14 | 175 | 27 | 750 |
2 | 2 | 15 | 200 | 28 | 775 |
3 | 3 | 16 | 225 | 29 | 800 |
4 | 5 | 17 | 250 | 30 | 825 |
5 | 7 | 18 | 300 | 31 | 850 |
6 | 10 | 19 | 350 | 32 | 875 |
7 | 20 | 20 | 400 | 33 | 900 |
8 | 30 | 21 | 450 | 34 | 925 |
9 | 50 | 22 | 500 | 35 | 950 |
10 | 70 | 23 | 550 | 36 | 975 |
11 | 100 | 24 | 600 | 37 | 1000 |
12 | 125 | 25 | 650 | ||
13 | 150 | 26 | 700 |
Precipitation Starting Time | 00:00 UTC 29 June | 00:00 UTC 7 July | 00:00 UTC 12 July | 00:00 UTC 29 July |
---|---|---|---|---|
Precipitation ending time | 00:00 UTC 30 June | 00:00 UTC 8 July | 00:00 UTC 13 July | 00:00 UTC 30 July |
Channel 6 | 06:00 UTC 29 | 06:00 UTC 6 | 06:00 UTC 14 | 06:00 UTC 29 |
Channel 7 | 18:00 UTC 28 | 06:00 UTC 6 | 06:00 UTC 14 | 06:00 UTC 29 |
300 hPa PV | 06:00 UTC 29 | 06:00 UTC 6 | 06:00 UTC 14 | 06:00 UTC 29 |
500 hPa | 18:00 UTC 28 | 06:00 UTC 5 | 18:00 UTC 13 | 06:00 UTC 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zou, X. Tracking the Early Movements of Northeast China Cold Vortices Using FY-3D MWTS-2 Observations of Brightness Temperature. Remote Sens. 2022, 14, 2530. https://doi.org/10.3390/rs14112530
Liu H, Zou X. Tracking the Early Movements of Northeast China Cold Vortices Using FY-3D MWTS-2 Observations of Brightness Temperature. Remote Sensing. 2022; 14(11):2530. https://doi.org/10.3390/rs14112530
Chicago/Turabian StyleLiu, Hui, and Xiaolei Zou. 2022. "Tracking the Early Movements of Northeast China Cold Vortices Using FY-3D MWTS-2 Observations of Brightness Temperature" Remote Sensing 14, no. 11: 2530. https://doi.org/10.3390/rs14112530
APA StyleLiu, H., & Zou, X. (2022). Tracking the Early Movements of Northeast China Cold Vortices Using FY-3D MWTS-2 Observations of Brightness Temperature. Remote Sensing, 14(11), 2530. https://doi.org/10.3390/rs14112530