A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models
Abstract
:1. Introduction
- State-of-the-art
- What are the strengths and weaknesses of process-based soil erosion models?
- What are the opportunities and limitations offered by the present data assessment techniques regarding the model parameterization and process description?
- Limitations and opportunities offered by assessment techniques regarding process-based soil erosion models
- Can today’s data assessment overcome shortcomings and improve existing models?
- Can soil erosion process descriptions be delineated from modern erosion measurement techniques and integrated into these models?
- Can data help to produce, parameterize and validate existing process-based soil erosion models or is there a need for a new modelling approach altogether?
2. Soil Erosion Assessment
2.1. Process-Based Soil Erosion Models
2.2. Techniques on Soil Erosion Measurement
- Recently improved methods offer new data, which can be used to feed process-based soil erosion models and offer spatial and temporal distributed model parameterization.
- Models are based on specific equations and therefore focus on certain processes and certain scales. Of interest are methods which offer new temporal and spatial cross-scale knowledge on soil erosion processes and their distribution. Such data can be used to validate available process understanding or even integrate new process understanding into models.
2.2.1. Parameterization Possibilities
Parameterization Due to Developments in Resolution
Possibilities Regarding Parameterization
2.2.2. New Data for Process Validation and Integration
Tracing
Satellite Remote Sensing
Photogrammetry and LiDAR
3. Challenges and Opportunities of Process-Based Soil Erosion Modelling in the Context of New and Improved Data Assessment Techniques
3.1. Parameterization
3.1.1. New Input Data Opportunities
3.1.2. Resolution and Spatial Distribution of Input Parameters
3.1.3. Model Complexity and Equifinality
3.2. Soil Erosion Processes
3.2.1. Rill Initiation
3.2.2. The Role of Scale Regarding Process Understanding
3.3. Connectivity
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Abbreviations: List of Process-Based Soil Erosion Models
DWSM | Dynamic Watershed Simulation Model [31] |
EROSION-3D | no abbreviation [35] |
EUROSEM | European Soil Erosion Model [40] |
GeoWEPP | Geospatial Interface for Water Erosion Prediction Project [144] |
GSSHA | Gridded Surface Subsurface Hydrologic Analysis [44] |
KINEROS1/2 | KINematic runoff and EROsion model [48] |
LISEM | Limburg Soil Erosion Model [52] |
MEFIDIS | Modelo de Erosão FÍsico e DIStribuído [53] |
MIKE SHE | no abbreviation [56] |
RillGrow | no abbreviation [57] |
SHETRAN | Systeme Hydrologique Europian-TRANsport [60] |
SIMWE | SIMulation of Water Erosion [61] |
SMODERP | A Simulation Model of Overland Flow and Erosion Processes [63] |
WEPP | Water Erosion Prediction Project [66] |
References
- Swinton, S.M.; Lupi, F.; Robertson, G.P.; Hamilton, S.K. Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 2007, 64, 245–252. [Google Scholar] [CrossRef]
- Evans, R.; Brazier, R. Evaluation of modelled spatially distributed predictions of soil erosion by water versus field-based assessments. Environ. Sci. Policy 2005, 8, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.L.; Quinton, J.N.; Tye, A.M.; Rodés, Á.; Davies, J.A.C.; Mudd, S.M.; Quine, T.A. Arable soil formation and erosion: A hillslope-based cosmogenic nuclide study in the United Kingdom. SOIL 2019, 5, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-C.; Nearing, M.A.; Garbrecht, J.D.; Steiner, J.L. Downscaling Monthly Forecasts to Simulate Impacts of Climate Change on Soil Erosion and Wheat Production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Shi, H.; Zhao, J.; Liu, P.; Welbourne, D.; Lin, Q. Digital close range photogrammetry for the study of rill development at flume scale. CATENA 2016, 143, 265–274. [Google Scholar] [CrossRef]
- Rieke-Zapp, D.H.; Nearing, M.A. Digital close range photogrammetry for measurement of soil erosion. Photogram. Rec. 2005, 20, 69–87. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Routschek, A.; Schmidt, J.; Enke, W.; Deutschlaender, T. Future soil erosion risk—Results of GIS-based model simulations for a catchment in Saxony/Germany. Geomorphology 2014, 206, 299–306. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Zhu, Q.; Wang, M.; Wang, H.; Peng, S.; He, H. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. J. Environ. Manag. 2019, 250, 109403. [Google Scholar] [CrossRef]
- Klik, A.; Eitzinger, J. Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. J. Agric. Sci. 2010, 148, 529–541. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Keizer, J.J. Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. CATENA 2013, 102, 27–39. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, M.; Batunacun. Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environ. Dev. 2020, 34, 100488. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G.; Cerdan, O.; Thauré, D.; van Rompaey, A.; Steegen, A.; Nachtergaele, J.; Takken, I.; Poesen, J. Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets. CATENA 2005, 61, 105–121. [Google Scholar] [CrossRef]
- Mullan, D.; Favis-Mortlock, D.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric. For. Meterol. 2012, 156, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Govers, G.; Giménez, R.; van Oost, K. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Sci. Rev. 2007, 84, 87–102. [Google Scholar] [CrossRef]
- Zingg, A.W. Degree and length of land slope as it affects soil loss in run-off. Agric. Enging. 1940, 21, 59–64. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains; US Department of Agriculture—Agriculture Research Service: Brooksville, FL, USA, 1965.
- Scherer, U. Prozessbasierte Modellierung der Bodenerosion in einer Lösslandschaft. In Dissertation; University Karlsruhe: Karlsruhe, Germany, 2008. [Google Scholar]
- De Roo, A.P.J.; Offermans, R.J.E. LISEM: A physically-based hydrological and soil erosion model for basin-scale water and sediment management. Modelling and Management of Sustainable Basin-scale Water Resource Systems. Int. Assoc. Hydrol. Sci. Publ. 1995, 231, 399–407. [Google Scholar]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. CATENA 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. CATENA 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M.; Fuentes, H.R. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karydas, C.G.; Panagos, P.; Gitas, I.Z. A classification of water erosion models according to their geospatial characteristics. Int. J. Digit. Earth 2012, 7, 229–250. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Modell. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Parsons, A.J. How reliable are our methods for estimating soil erosion by water? Sci. Total Environ. 2019, 676, 215–221. [Google Scholar] [CrossRef]
- Jetten, V.; Favis-Mortlock, D. Modelling Soil Erosion in Europe. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 695–716. ISBN 9780470859209. [Google Scholar]
- Baartman, J.E.; Nunes, J.P.; Masselink, R.; Darboux, F.; Bielders, C.; Degré, A.; Cantreul, V.; Cerdan, O.; Grangeon, T.; Fiener, P.; et al. What do models tell us about water and sediment connectivity? Geomorphology 2020, 367, 107300. [Google Scholar] [CrossRef]
- Batista, P.V.; Laceby, J.P.; Davies, J.; Carvalho, T.S.; Tassinari, D.; Silva, M.L.; Curi, N.; Quinton, J.N. A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models and the observational data. Environ. Modell. Softw. 2021, 137, 104961. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M.; Shaw, S.; Keefer, L. Dynamic Modeling and Monitoring of Water, Sediment, Nutrients, and Pesticides in Agricultural Watersheds during Storm Events; Illinois Groundwater Consortium: Champaign, IL, USA, 1999. [Google Scholar]
- Smith, R.E.; Parlange, J.-Y. A parameter-efficient hydrologic infiltration model. Water Resour. Res. 1978, 14, 533–538. [Google Scholar] [CrossRef]
- Lighthill, M.J.; Whitham, G.B. On kinematic waves I. Flood movement in long rivers. Proc. R Soc. Lond. A 1955, 229, 281–316. [Google Scholar] [CrossRef]
- Borah, D.K.; Prasad, S.N.; Alonso, C.V. Kinematic wave routing incorporating shock fitting. Water Resour. Res. 1980, 16, 529–541. [Google Scholar] [CrossRef]
- Schmidt, J. A mathematical Model to Simulate Rainfall Erosion. Catena Supp. 1991, 19, 101–109. [Google Scholar]
- Green, W.H.; Ampt, G.A. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J. Entwicklung Und Anwendung Eines Physikalisch Begründeten Simulationsmodells Für Die Erosion Geneigter landwirtschaftlicher Nutzflächen; Selbstverl. des Inst. für Geographische Wissenschaften: Berlin, Germany, 1996; ISBN 3-88009-062-9. [Google Scholar]
- von Werner, M.; Schröder, A.; Schmidt, J. Abschätzung Des Oberflächenabflusses Und Der Wasserinfiltration Auf Landwirtschaftlich Genutzten Flächen Mit Hilfe Des Modells EROSION-3D Endbericht; Sächsisches Landesamt für Landwirtschaft: Berlin, Germany, 2004; Available online: https://tu-freiberg.de/sites/default/files/media/professur-boden--und-gewaesserschutz-15982/PDF/Publikationen/geognostics_2005.pdf (accessed on 9 April 2020).
- Schmidt, J. Modeling long-term soil loss and landform change. In Overland Flow—Hydraulics and Erosion Mechanics; Abrahams, A.J., Parsons, A.D., Eds.; University College London Press: London, UK, 1992. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.; Folly, A.J. The European Soil Erosion Model (EUROSEM): Documentation and User Guide; Silsoe College, Cranfield University: Bedford, UK, 1998. [Google Scholar]
- Woolhiser, D.A.; Liggett, J.A. Unsteady, one-dimensional flow over a plane-The rising hydrograph. Water Resour. Res. 1967, 3, 753–771. [Google Scholar] [CrossRef]
- Govers, G. Empirical relationships for the transport capacity of overland flow. Int. Assoc. Hydrol. Sci. Publ. 1990, 189, 45–63. [Google Scholar]
- Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics; Geological Survey Professional paper; US Government Printing Office: Washington, DC, USA, 1966; Volume 1.
- Downer, C.W.; Ogden, F.L. GSSHA: Model To Simulate Diverse Stream Flow Producing Processes. J. Hydrol. Eng. 2004, 9, 161–174. [Google Scholar] [CrossRef]
- Ogden, F.L.; Saghafian, B. Green and Ampt Infiltration with Redistribution. J. Irrig. Drain. E 1997, 123, 386–393. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. J. Agric. Sci. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Johnson, B.E.; Julien, P.Y.; Molnar, D.K.; Watson, C.C. The two-dimensional upland erosion model casc2d-sed. J. Am. Water Resour. As. 2000, 36, 31–42. [Google Scholar] [CrossRef]
- Woolhiser, D.A.; Smith, R.E.; Goodrich, D.C. KINEROS: A Kinematic Runoff and Erosion Model: Documentation and User Manual; U.S. Department of Agricultural; Agricultural Research Service: Washington, DC, USA, 1990.
- Fortuño Ibáñez, J.; Gómez Valentín, M.; Jang, D. Application of the KINEROS 2 Model to Natural Basin for Estimation of Erosion. Appl. Sci. 2021, 11, 9320. [Google Scholar] [CrossRef]
- Meyer, L.D.; Wischmeier, W.H. Mathematical Simulation of the Process of Soil Erosion by Water. Trans. ASAE 1969, 732, 754–762. [Google Scholar]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; Teknisk Vorlag: Copenhagen, Denmark, 1967. [Google Scholar]
- De Roo, A.P.J.; Wesseling, C.G.; Cremers, N.H.D.T.; Offermans, R.J.E.; Ritsema, C.J.; Oostindie, K. LISEM: A new physically-based hydrological and soil erosion model in a GIS-environment, theory and implementation. Var. Stream Eros. Sediment Transp. 1994, 224, 439–448. [Google Scholar]
- Nunes, J.P.; Vieira, G.N.; Seixas, J.; Gonçalves, P.; Carvalhais, N. Evaluating the MEFIDIS model for runoff and soil erosion prediction during rainfall events. CATENA 2005, 61, 210–228. [Google Scholar] [CrossRef]
- Sharma, P.P.; Gupta, S.C.; Rawls, W.J. Soil Detachment by Single Raindrops of Varying Kinetic Energy. Soil Sci. Soc. Am. J. 1991, 55, 301. [Google Scholar] [CrossRef]
- Charpa, S.C. Surface Water-Quality Modeling; Waveland Press Inc.: Long Grove, IL, USA, 1997. [Google Scholar]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Favis-Mortlock, D. A self-organizing dynamic systems approach to the simulation of rill initiation and development on hillslopes. Comput. Geosci. 1998, 24, 353–372. [Google Scholar] [CrossRef]
- Favis-Mortlock, D.T.; Boardman, J.; Parsons, A.J.; Lascelles, B. Emergence and erosion: A model for rill initiation and development. Hydrol. Process. 2000, 14, 2173–2205. [Google Scholar] [CrossRef]
- Nearing, M.A.; Norton, L.D.; Bulgakov, D.A.; Larionov, G.A.; West, L.T.; Dontsova, K.M. Hydraulics and erosion in eroding rills. Water Resour. Res. 1997, 33, 865–876. [Google Scholar] [CrossRef]
- Bathurst, J.C. Physically-based erosion and sediment yield modelling: The SHETRAN concept. In Modelling Erosion, Sediment Transport and Sediment Yield; Technical Documents in Hydrology: Paris, France, 2002. [Google Scholar]
- Mitas, L.; Mitasova, H. Distributed soil erosion simulation for effective erosion prevention. Water Resour. Res. 1998, 34, 505–516. [Google Scholar] [CrossRef]
- Julien, P.Y.; Saghafian, B.; Ogden, F.L. Raster-based hydrologic modeling of spatially-varied surface runoff. J. Am. Water Resour. Assoc. 1995, 31, 523–536. [Google Scholar] [CrossRef]
- Dostál, T.; Váška, J.; Vrána, K. SMODERP—A Simulation Model of Overland Flow and Erosion Processes. In Soil Erosion; Schmidt, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 135–161. ISBN 978-3-642-08605-2. [Google Scholar]
- Kavka, P.; Zajicek, J. Soil erosion model smoderp—1D and 2D modelling. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 16–22 June 2013. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Laflen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Flanagan, D.C.; Ascough, J.C.; Nearing, M.A.; Laflen, J.M. The Water Erosion Prediction Project (WEPP) Model. In Landscape Erosion and Evolution Modeling; Harmon, R.S., Doe, W.W., Eds.; Springer: Boston, MA, USA, 2001; pp. 145–199. ISBN 978-1-4613-5139-9. [Google Scholar]
- Chu, S.T. Infiltration during an unsteady rain. Water Resour. Res. 1978, 14, 461–466. [Google Scholar] [CrossRef]
- Foster, G.R.; Flanagan, D.C.; Nearing, M.; Lane, L.J.; Risse, L.M.; Finker, S.C. Hillslope erosion component. In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Yalin, M.S. An Expression for Bed-Load Transportation. J. Hydraul. Div. 1963, 89, 221–250. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Tian, Y.; Luo, G. Review and Future Research Directions about Major Monitoring Method of Soil Erosion. J. Hydrol. Eng. 2017, 63, 12042. [Google Scholar] [CrossRef] [Green Version]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. SOIL 2020, 6, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Guan, Z.; Tang, X.-Y.; Yang, J.E.; Ok, Y.S.; Xu, Z.; Nishimura, T.; Reid, B.J. A review of source tracking techniques for fine sediment within a catchment. Environ. Geochem. Health 2017, 39, 1221–1243. [Google Scholar] [CrossRef] [Green Version]
- Jester, W.; Klik, A. Soil surface roughness measurement—Methods, applicability, and surface representation. CATENA 2005, 64, 174–192. [Google Scholar] [CrossRef]
- Thomsen, L.M.; Baartman, J.E.M.; Barneveld, R.J.; Starkloff, T.; Stolte, J. Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. SOIL 2015, 1, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Batista, P.V.; Davies, J.; Silva, M.L.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Loughran, R.J. The measurement of soil erosion. Prog. Phys. Geogr. Earth Environ. 1989, 13, 216–233. [Google Scholar] [CrossRef]
- Septianugraha, R.; Harryanto, R.; Sara, D.S. Remote sensing and GIS methode for assess erosion with satellite imagery at Citarik Sub-Watershed. IOP Conference Series: Earth and Environmental Science, Bandung, Indonesia, 5–7 August 2019; Volume 393, p. 12064. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Hu, Y.; Fister, W.; He, Y.; Kuhn, N.J. Assessment of crusting effects on interrill erosion by laser scanning. Peer J. 2020, 8, e8487. [Google Scholar] [CrossRef]
- Kaiser, A.; Erhardt, A.; Eltner, A. Addressing uncertainties in interpreting soil surface changes by multitemporal high-resolution topography data across scales. Land Degrad. Dev. 2018, 29, 2264–2277. [Google Scholar] [CrossRef]
- Li, L.; Nearing, M.A.; Nichols, M.H.; Polyakov, V.O.; Phillip Guertin, D.; Cavanaugh, M.L. The effects of DEM interpolation on quantifying soil surface roughness using terrestrial LiDAR. Soil Till. Res. 2020, 198, 104520. [Google Scholar] [CrossRef]
- Gilliot, J.M.; Vaudour, E.; Michelin, J. Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields. Comput. Electron. Agric. 2017, 134, 63–78. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D.; Maas, H.-G. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties. Int. Arch. Photogramm. Remote Sens. Spatial. Inf. Sci. 2016, XLI-B5, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Onnen, N.; Eltner, A.; Heckrath, G.; van Oost, K. Monitoring soil surface roughness under growing winter wheat with low-altitude UAV sensing: Potential and limitations. Earth Surf. Proc. Land 2020, 45, 3747–3759. [Google Scholar] [CrossRef]
- Kemppinen, J.; Niittynen, P.; Riihimäki, H.; Luoto, M. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surf. Proc. Land 2018, 43, 1019–1031. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 33, 149. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Tapoglou, E.; Vozinaki, A.-E.K.; Tsanis, I.K. Integrated Use of Satellite Remote Sensing, Artificial Neural Networks, Field Spectroscopy, and GIS in Estimating Crucial Soil Parameters in Terms of Soil Erosion. Remote Sens. 2019, 11, 1106. [Google Scholar] [CrossRef] [Green Version]
- Bondi, G.; Creamer, R.; Ferrari, A.; Fenton, O.; Wall, D. Using machine learning to predict soil bulk density on the basis of visual parameters: Tools for in-field and post-field evaluation. Geoderma 2018, 318, 137–147. [Google Scholar] [CrossRef]
- de Lima, R.L.P.; Abrantes, J.R.; de Lima, J.L.M.P.; de Lima, M.I.P. Using thermal tracers to estimate flow velocities of shallow flows: Laboratory and field experiments. J. Hydrol. Hydromech. 2015, 63, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Tauro, F.; Grimaldi, S. Ice dices for monitoring stream surface velocity. J. Hydro-Environ. Res. 2016, 14, 143–149. [Google Scholar] [CrossRef]
- Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G. Automatic spatio-temporal flow velocity measurement in small rivers using thermal image sequences. ISPRS Ann. Photogramm. Remote Sens. Spatial. Inf. Sci. 2018, IV-2, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Mabit, L.; Benmansour, M.; Walling, D.E. Comparative advantages and limitations of the fallout radionuclides (137)Cs, (210)Pb(ex) and (7)Be for assessing soil erosion and sedimentation. J. Environ. Radioactiv. 2008, 99, 1799–1807. [Google Scholar] [CrossRef]
- Alewell, C.; Pitois, A.; Meusburger, K.; Ketterer, M.; Mabit, L. 239+240 Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth Sci. Rev. 2017, 172, 107–123. [Google Scholar] [CrossRef]
- Deumlich, D.; Jha, A.; Kirchner, G. Comparing measurements, 7Be radiotracer technique and process-based erosion model for estimating short-term soil loss from cultivated land in Northern Germany. Soil Water Res. 2017, 12, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, P.; Eltner, A.; Domula, A.R.; Barkleit, A.; Faust, D. Scale dependent soil erosion dynamics in a fragile loess landscape. Z. Für Geomorphol. 2017, 61, 191–206. [Google Scholar] [CrossRef]
- Guzmán, G.; Quinton, J.N.; Nearing, M.A.; Mabit, L.; Gómez, J.A. Sediment tracers in water erosion studies: Current approaches and challenges. J. Soil Sediment 2013, 13, 816–833. [Google Scholar] [CrossRef]
- Sepuru, T.K.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sens. Appl. Soc. Environ. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Vrieling, A. Satellite remote sensing for water erosion assessment: A review. CATENA 2006, 65, 2–18. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Terink, W.; de Vente, J. Assessing the large-scale impacts of environmental change using a coupled hydrology and soil erosion model. Earth Surf. Dynam. 2018, 6, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Neugirg, F.; Kaiser, A.; Schmidt, J.; Becht, M.; Haas, F. Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and UAV photographs. Proc. IAHS 2015, 367, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Glendell, M.; McShane, G.; Farrow, L.; James, M.R.; Quinton, J.; Anderson, K.; Evans, M.; Benaud, P.; Rawlins, B.; Morgan, D.; et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Processes Landf. 2017, 42, 18601871. [Google Scholar] [CrossRef]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. In Remote Sensing of Geomorphology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–24. ISBN 9780444641779. [Google Scholar]
- Eltner, A.; Kaiser, A.; Abellan, A.; Schindewolf, M. Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring. Earth Surf. Proc. Land 2017, 42, 2240–2253. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Liang, X.; Huang, T.; Fu, S.; Liu, B. Evaluation of structure from motion (SfM) photogrammetry on the measurement of rill and interrill erosion in a typical loess. Geomorphology 2021, 385, 107734. [Google Scholar] [CrossRef]
- Laburda, T.; Krása, J.; Zumr, D.; Devátý, J.; Vrána, M.; Zambon, N.; Johannsen, L.L.; Klik, A.; Strauss, P.; Dostál, T. SfM-MVS Photogrammetry for Splash Erosion Monitoring under Natural Rainfall. Earth Surf. Proc. Land 2021, 46, 1067–1082. [Google Scholar] [CrossRef]
- Li, L.; Nearing, M.A.; Nichols, M.H.; Polyakov, V.O.; Cavanaugh, M.L. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall. Earth Surf. Proc. Land 2020, 45, 484–495. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Todisco, F.; Mannocchi, F.; Radicioni, F. Measuring rill erosion by laser scanning. CATENA 2015, 124, 97–108. [Google Scholar] [CrossRef]
- Kaiser, A.; Neugirg, F.; Haas, F.; Schmidt, J.; Becht, M.; Schindewolf, M. Determination of hydrological roughness by means of close range remote sensing. SOIL 2015, 1, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; de Lima, J.L.M.P.; Fister, W.; Ries, J.B. Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Sci. Total Environ. 2017, 590–591, 502–513. [Google Scholar] [CrossRef]
- Schmidt, J.; Werner, M.v.; Schindewolf, M. Wind effects on soil erosion by water—A sensitivity analysis using model simulations on catchment scale. CATENA 2017, 148, 168–175. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Cons. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Starkloff, T.; Stolte, J. Applied comparison of the erosion risk models EROSION 3D and LISEM for a small catchment in Norway. CATENA 2014, 118, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Ayensa-Jiménez, J.; Doweidar, M.H.; Sanz-Herrera, J.A.; Doblaré, M. An unsupervised data completion method for physically-based data-driven models. Comput. Method Appl. M 2019, 344, 120–143. [Google Scholar] [CrossRef] [Green Version]
- Hessel, R.; van den Bosch, R.; Vigiak, O. Evaluation of the LISEM soil erosion model in two catchments in the East African Highlands. Earth Surf. Proc. Land 2006, 31, 469–486. [Google Scholar] [CrossRef]
- Govers, G. Misapplications and Misconceptions of Erosion Models. In Handbook of Erosion Modelling; Morgan, R.P.C., Nearing, M.A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 117–134. ISBN 9781444328455. [Google Scholar]
- Starkloff, T.; Stolte, J.; Hessel, R.; Ritsema, C.; Jetten, V. Integrated, spatial distributed modelling of surface runoff and soil erosion during winter and spring. CATENA 2018, 166, 147–157. [Google Scholar] [CrossRef]
- Favis-Mortlock, D. “The Right Answer for the Wrong Reason” Revisited: Validation of a Spatially-Explicit Soil Erosion Model (RillGrow); EGU: Vienna, Austria, 2010. [Google Scholar]
- Culling, W.E.H. Multicyclic Streams and the Equilibrium Theory of Grade. J. Geol. 1957, 65, 259–274. [Google Scholar] [CrossRef]
- Lifeng, Y. A soil erosion model based on cellular automata. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 21–26. [Google Scholar]
- Wirtz, S.; Seeger, M.; Ries, J.B. The rill experiment as a method to approach a quantification of rill erosion process activity. Z. Für Geomorphol. 2010, 54, 47–64. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Wang, N.; Yu, M.; Assouline, S. Modeling Rainfall-Runoff and Soil Erosion Processes on Hillslopes With Complex Rill Network Planform. Water Resour. Res. 2018, 54, 570. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Wang, N.; Li, J.; Li, J. Two-dimensional rainfall-runoff and soil erosion model on an irregularly rilled hillslope. J. Hydrol. 2020, 580, 124346. [Google Scholar] [CrossRef]
- Wirtz, S.; Seeger, M.; Zell, A.; Wagner, C.; Wagner, J.-F.; Ries, J.B. Applicability of different hydraulic parameters to describe soil detachment in eroding rills. PLoS ONE 2013, 8, e64861. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chen, L. Modeling Soil Erosion With Evolving Rills on Hillslopes. Water Resour. Res. 2020, 56, 697. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Measuring rill erosion using structure from motion: A plot experiment. CATENA 2017, 156, 383–392. [Google Scholar] [CrossRef]
- Zhang, X.-C.J.; Liu, G.; Zheng, F. Understanding erosion processes using rare earth element tracers in a preformed interrill-rill system. Sci. Total Environ. 2018, 625, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Nouwakpo, S.K.; Williams, C.J.; Al-Hamdan, O.Z.; Weltz, M.A.; Pierson, F.; Nearing, M. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps. Int. Soil Water Cons. Res. 2016, 4, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Eekhout, J.P.; Millares-Valenzuela, A.; Martínez-Salvador, A.; García-Lorenzo, R.; Pérez-Cutillas, P.; Conesa-García, C.; Vente, J. A process-based soil erosion model ensemble to assess model uncertainty in climate-change impact assessments. Land Degrad. Dev. 2021, 32, 2409–2422. [Google Scholar] [CrossRef]
- Cerdà, A.; Brazier, R.; Nearing, M.; de Vente, J. Scales and erosion. CATENA 2013, 102, 1–2. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Yunus, A.P.; Ju, Y.; Guo, C.; Wang, C.; Zhao, K. Multi-temporal UAV data for assessing rapid rill erosion in typical gully heads on the largest tableland of the Loess Plateau, China. Bull. Eng. Geol. Environ. 2020, 79, 1861–1877. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash erosion: A review with unanswered questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, M.; Vericat, D.; Pereira, P. Mapping water and sediment connectivity. Sci. Total Environ. 2019, 673, 763–767. [Google Scholar] [CrossRef]
- Biddulph, M.; Collins, A.L.; Foster, I.; Holmes, N. The scale problem in tackling diffuse water pollution from agriculture: Insights from the Avon Demonstration Test Catchment programme in England. River Res. Appl. 2017, 33, 1527–1538. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.; Vandaele, K.; Evans, R.; Foster, I.D.L. Off-site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use Manag. 2019, 35, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, D.T.; Fox, J.; Al-Aamery, N.; Clare, E. Integrating connectivity theory within watershed modelling part II: Application and evaluating structural and functional connectivity. Sci. Total Environ. 2020, 740, 140386. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Dilly, L.A.; Haselberger, S.; Renschler, C.S.; Baartman, J.E.M. Combining Soil Erosion Modeling with Connectivity Analyses to Assess Lateral Fine Sediment Input into Agricultural Streams. Water 2019, 11, 1793. [Google Scholar] [CrossRef] [Green Version]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment connectivity concepts and approaches. CATENA 2021, 196, 104880. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
Model Information | Field/ Watershed Scale | Process Mapping | |||||
---|---|---|---|---|---|---|---|
Infiltration (Matrix Infiltration (MI)) | Runoff Generation and Delay (Flow Velocity (FV), Runoff Delay (RD)) | Particle Detachment by Splash and by Overland Flow (DbS & DbO) | Particle Size & Sediment Transport (PT & ST), Particle Size Distribution [PD] | Sediment Deposition (SD) & Particle Size Distribution (PD) | Flow Routing (FR) (Channel Routing (CR), Overland Flow Routing (OfR)) | ||
DWSM [31] | W | MI: Smith-Parlange [32] | FV: Manning’s n [31]; RD: kinematic wave [33] | DbS: raindrop detachment coef.; DbO: flow detachment coef. [31] | ST: sediment continuity eq.; PT: bed load formula [31] | SD & PD: volumetric rate of sediment deposition per unit length [29] | FR: water routing scheme (approximate shock-fitting) [34], modified PULS routing [31] |
EROSION -3D [35] | F/W | MI: Green Ampt [36] | FV: Manning’s n [37]; RD: kinematic wave [38] | DbS & DbO: momentum flux approach [39] | ST: transport capacity; PT: Stokes eq. [37] | SD: transport capacity; PD: deposition coef. [37] | DEM (digital elevation model) based OfR: FD8; CF: D8 [37] |
EUROSEM [40] | F | MI: Smith-Parlange [32] | FV: Manning’s n [40]; RD: kinematic wave [41] | DbS: raindrop impact eq. [40]; DbO: generalised erosion theory [40] | ST: modified stream power [42,43]; PD: finite difference eq. [40] | SD: generalised deposition theory [40] | FR: rating equation based on normal flow eq. [40] |
GSSHA [44] | W | MI: (traditional/ modified) Green Ampt [36,45]; 1-D Richards eq. [46] | FV: Manning’s n [44] | No information found | ST: modified Klinic -Richardson (incl. empirical coef.) [44]; PD: unit stream power method [44] | SD: trap efficiency relation [47] | OfR: 2D diffusive wave [44]; CR: 1-D up-gradient explicit diffusive wave [44] |
KINEROS 1/2 [48,49] | W | MI: Smith-Parlange [32] | FV: Manning’s n, Reynolds number, Chezy C [48]; RD: kinematic wave [41] | DbS: empirical function [48]; DbO: mass-balance eq. kinetic transfer process [48] | ST: tractive force relation [50], unit stream power relation, Bagnold relation, Ackers & White relation, transport relation [48], Engelund -Hansen transport relation [51] | SD: transport capacity; PD: deposition coef. [48] | CR: kinematic approximation to the eq. of unsteady [48] |
LISEM [20,52] | W | MI: Richards eq. (part Mualem/ Van Genuchten eq.) [52] | FV, Manning’s n; RD: kinematic wave (four-point finite-difference solution) [52] | DbS: splash detachment function [20]; DbO: generalised erosion theory [40] | ST: transport capacity (unit stream power function); PD: function of grain size [42] | SD: generalised deposition theory [40]; PD: transport capacity [42] | No information found |
MEFIDIS [53] | W | MI: Green Ampt [53] | FV: Manning’s n; RD: kinematic wave [53] | DbS: raindrop eq.; DbO: interrill sediment delivery eq. [54] | ST: transport capacity eq. [42]; PD: particle sedimentation velocity (Stoke’s law) [55] | SD: transport capacity eq. [42]; PD: particle sedimentation velocity (Stoke’s law) [55] | Runoff generation and routing: Saint Venant eq. [53] |
MIKE SHE [56] | F/W | MI: 1-D Richards eq.; macropore infiltration: simplified capacitance-type approach [56] | FV: Manning’s n; RD: Saint Venant eq. (1-D and 2-D), diffusive wave approximation, kinematic wave [56] | DbS & DbO: Saint Venant eq. of continuity and momentum, implicit finite difference scheme [56] | ST: 3-D Darcy eq. [56]; channel flow: 1-D hydrological model MIKE 11 [56] | No information found | No information found |
RillGrow [57] | F | Infiltration is ignored [57] | FV: base component and depth-dependent component [58] | DbO: S-curve stream-power-based expression [59] | ST & PD: unit sediment load, infinite transport capacity [59] | No implementation [57] | FR: routing algorithm [58], self-organising dynamic system [57] |
SHETRAN [60] | F/W | MI: 1-D Richard’s eq. [60] | RD: Saint Venant eq. (1-D and 2-D) [60] | DbS: raindrop impact soil erodibility coef., [60]; DbO: overland flow soil erodibility coef. [60] | ST & PD: mass conservation eq., incorporating Engelund-Hansen total load & Yalin bed load transport capacity eq. [60] | SD & PD: mass conservation eq., incorporating Engelund-Hansen total load & Yalin bed load transport capacity eq. [60] | No information found |
SIMWE [61] | W | No information found | FV: based on Manning’s n; RD: kinematic wave (+diffusion coef.) [61] | DbS & DbO: detachment capacity coef. [61] | ST: transport capacity; PD: continuity of sediment mass eq. [61] | SD: transport capacity [61] | FR: flow as bivariate vector fields [62] |
SMODERP 1/2 [63,64] | F/W | MI: Philip eq. [65] | FV: Manning’s n; RD: kinematic wave, Saint Venant eq. (motion and continuity eq.) [64] | DbS & DbO: amount of detached soil particles eq. [63] | ST: transport capacity; PD: movement of soil particles [63] | SD: transport capacity; PD: sedimentation of soil particles [63] | DEM based OfR: D8 flow direction algorithm [63] |
WEPP [66,67] | F/W | MI: modified Green Ampt Mein-Larson model [68] | FV: random roughness; RD: (semi-analytic/ approximation) kinematic wave [66] | DbS: Darcy -Weisbach friction factors and shear stress [69]; DbO: linear function of excess hydraulic shear [66] | ST: Yalin sediment transport eq. [70]; PD: fall velocity of transported sediment [66] | SD: transport capacity; PD: sediment particle sorting due to selective deposition [67] | No information found |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epple, L.; Kaiser, A.; Schindewolf, M.; Bienert, A.; Lenz, J.; Eltner, A. A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models. Remote Sens. 2022, 14, 2468. https://doi.org/10.3390/rs14102468
Epple L, Kaiser A, Schindewolf M, Bienert A, Lenz J, Eltner A. A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models. Remote Sensing. 2022; 14(10):2468. https://doi.org/10.3390/rs14102468
Chicago/Turabian StyleEpple, Lea, Andreas Kaiser, Marcus Schindewolf, Anne Bienert, Jonas Lenz, and Anette Eltner. 2022. "A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models" Remote Sensing 14, no. 10: 2468. https://doi.org/10.3390/rs14102468
APA StyleEpple, L., Kaiser, A., Schindewolf, M., Bienert, A., Lenz, J., & Eltner, A. (2022). A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models. Remote Sensing, 14(10), 2468. https://doi.org/10.3390/rs14102468