Source Apportionment of Heavy Metal Contamination in Urban-Agricultural-Aquacultural Soils near the Bohai Bay Coast, Using Land-Use Classification and Google Satellite Tracing
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Study Area
3.2. Soil Sampling and Chemical Analysis
3.3. Soil Data Preprocessing
3.3.1. Outlier Detection and Treatment
Algorithm 1 A combination algorithm of trend analysis and four-time average deviation to detect outliers |
Input: is one of the 14 soil variables listed in Table 1). Trend fit by quadratic polynomials: Calculation of residual: Prejudgment of outliers: is the mean value of all trend-fitted values of the soil variable . (This means that sample No. of soil variable is a potential outlier.) Double check of outliers by four-time average deviation: if is the mean value of all in situ values except the potential outlier for soil variable and is the average deviation of all in situ values except the potential outlier). |
3.3.2. Normality Detection
3.4. Determination of Environmental Factors
3.5. Definitions of Soil Contamination Grades
3.6. Land-Use Map
3.7. Geostatistical Method
3.8. Performance Metrics
4. Results of OCK Mapping Soil Heavy Metals
5. Discussion on Sources of Soil Heavy Metals
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, L.; Wang, Y.H.; Jing, L.H.; Cheng, Q.M. Quantitative determination of auxiliary information for mapping soil heavy metals and soil contamination risk assessment. Appl. Geogr. 2021, 130, 104964. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmad, E. Soil contamination, nutritive value, and human health risk assessment of heavy metals: An overview. Toxic. Heavy Met. Legumes Bioremed. 2012, 2012, 1–27. [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Żukowska, J.; Biziuk, M. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci. 2008, 73, R21–R29. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 456, 212–221. [Google Scholar] [CrossRef]
- Shanker, A.K.; Venkateswarlu, B. Chromium: Environmental pollution, health effects and mode of action 2012. Available online: https://www.hindawi.com/journals/jeph/2012/341637/ (accessed on 6 May 2012).
- Ma, J.; Singhirunnusorn, W. Distribution and health risk assessment of heavy metals in surface dusts of Maha Sarakham municipality. Procedia Soc. Behav. Sci. 2012, 50, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Huang, Y.; Shen, C.; Ye, H.; Du, Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma 2012, 171–172, 35–43. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal contamination and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- De Kimpe, C.R.; Morel, J.L. Urban soil management: A growing concern. Soil Sci. 2000, 165, 31–40. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Paterson, E.; Sanka, M.; Clark, L. Urban soils as pollutant sinks -a case study from Aberdeen, Scotland. Sci. Total Environ. 1996, 11, 129–131. [Google Scholar] [CrossRef]
- Poggio, L.; Vrscaj, B.; Schulin, R.; Hepperle, E.; Marsan, F.A. Metals pollution and human bio-accessibility of topsoils in Grugliasco (Italy). Environ. Pollut. 2009, 157, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Li, X.D.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aelion, C.M.; Davis, H.T.; McDermott, S.; Lawson, A.B. Metal concentrations in rural topsoil in South Carolina: Potential for human health impact. Sci. Total Environ. 2008, 402, 149–156. [Google Scholar] [CrossRef] [Green Version]
- De Miguel, E.; De Grado, M.J.; Llamas, J.F.; Martın-Dorado, A.; Mazadiego, L.F. The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Sci. Total Environ. 1998, 215, 113–122. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Majid, A.; Yeganeh, M. Contamination and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef]
- Madrid, L.; Dıáz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 468–469, 843–853. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Zhang, X.; Wu, D.; Luo, W.; Zhang, T.; Zhou, S.; Yang, G.; Wan, H.; Wu, L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J. Geochem. Explor. 2015, 148, 71–78. [Google Scholar] [CrossRef]
- Qu, M.; Chen, J.; Huang, B.; Zhao, Y. Source apportionment of soil heavy metals using robust spatial recept or model with categorical land-use types and RGWR-corrected in-situ FPXRF data. Environ. Pollut. 2021, 270, 116220. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.B.; Ma, J.; Wang, X.L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Christakos, G.; Guo, M.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Zhao, N.; Yu, R.; Xu, G.; Yu, Y. Spatial distribution and risk assess- ment of heavy metals in Paddy soils of Yongshuyu irrigation area from Songhua River Basin, Northeast China. Chin. Geogr. Sci. 2018, 28, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Jiao, W.B.; Qiu, H.Y.; Chen, B.; Huang, X.X.; Kang, B. Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi county Southeast China. Geoderma 2018, 310, 99–106. [Google Scholar]
- Olea, R.A. A six-step practical approach to semivariogram modeling. Stoch. Environ. Res. Risk Assess. 2006, 20, 307–318. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Fei, X.; Christakos, G.; Xiao, R.; Ren, Z.Q.; Liu, Y.; Lv, X.N. Improved heavy metal mapping and contamination source apportionment in Shanghai City soils using auxiliary information. Sci. Total Environ. 2019, 661, 168–177. [Google Scholar] [CrossRef]
- Bogaert, P.; D’Or, D. Estimating soil properties from thematic soil maps. Soil Sci. Soc. Am. J. 2002, 66, 1492–1500. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.R.; Li, W.D. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Zhu, J.X.; Bao, Y.T.; Li, C. Discussion on the method for testing and treating outliers. Univ. Chem. 2018, 33, 58–65. (In Chinese) [Google Scholar] [CrossRef]
- Cao, S.; Lu, A.; Wang, J.; Huo, H. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Sci. Total Environ. 2016, 580, 430–439. [Google Scholar] [CrossRef]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef]
- Rodríguez, M.J.A.; López, A.M.; Grau, C.J.M. Heavy metal contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environ. Pollut 2006, 144, 1001–1012. [Google Scholar] [CrossRef]
- CNEMC, China National Environmental Monitoring Center. The Soil Background Value in China; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- CEPA, Chinese Environmental Protection Administration. Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land (GB36600—2018); CEPA: Beijing, China, 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446027.shtml (accessed on 1 August 2018). (In Chinese)
- Zeng, L.; Shi, Q.Y.; Guo, K.; Xie, S.Y.; Herrin, J. A three-variables cokriging method to estimate bare-surface soil moisture using multi-temporal, VV-polarization synthetic-aperture radar data. Hydrogeol. J. 2020, 28, 2129–2139. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Liu, Q.M.; Jing, L.H.; Lan, L.; Feng, J. Using generalized regression neural network to retrieve bare surface soil moisture from radarsat-2 backscatter observations, regardless of roughness effect. Front. Earth Sc.-Switz. 2021, 9, 657206. [Google Scholar] [CrossRef]
- Kvalseth, T.O. Cautionary note about R2. Am. Stat. 1985, 39, 279–285. [Google Scholar]
- Hahn, G.J. The coefficient of determination exposed. Chemtech 1973, 3, 609–612. [Google Scholar]
- Box, G.E.P. Non-Normality and Tests on Variances. Biometrika 1953, 40, 318–335. [Google Scholar] [CrossRef]
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic Pollution Sources. Rev. Environ. Contam. Trans. 2008, 197, 17–60. [Google Scholar]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential sources of anthropogenic copper inputs to European agricultural soil. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Pietrzak, U.; McPhail, D.C. Copper accumulation, distribution, and fractionation in vineyard soils of Victoria, Australia. Geoderma 2004, 122, 151–166. [Google Scholar] [CrossRef]
- Nriagu, J.O. Chromium in Natural and Human Environment; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
Soil Variable | Mean Value | Range | Analytical Technique |
---|---|---|---|
Cd (mg/kg) | 0.085 | 0.073 to 0.117 | AFS 1 |
As (mg/kg) | 7.720 | 5.670 to 10.168 | |
Hg (mg/kg) | 0.029 | 0.02 to 0.085 | |
Cr (mg/kg) | 70.686 | 49.922 to 118.159 | ICP-MS 2 |
Cu (mg/kg) | 17.286 | 12.356 to 68.266 | |
Pb (mg/kg) | 19.792 | 15.295 to 65.304 | |
AK 3 (mg/kg) | 142.423 | 30.802 to 381.803 | ICP-OES 4 |
AP 5 (mg/kg) | 48.158 | 5.532 to 225.954 | |
Fe2O3 (%) | 4.631 | 3.934 to 5.503 | |
MgO (%) | 1.316 | 1.118 to 1.564 | |
K2O (%) | 2.893 | 1.994 to 8.459 | |
AN 6 (mg/kg) | 97.410 | 20.269 to 406.735 | CHNS elemental analyzer |
C (%) | 0.800 | 0.260 to 1.740 | |
S (%) | 0.097 | 0.046 to 0.341 |
Soil Variable | Outliers (Sample No.) | Soil Variable | Outliers (Sample No.) |
---|---|---|---|
Hg | {3, 35, 32} | AN | {40, 47} |
Cu | {47} | S | {1} |
Pb | {12, 47, 51, 40, 43} | K2O | {3, 32, 35} |
AP | {20, 35} |
Variable | Normality Mode | Variable | Normality Mode |
---|---|---|---|
Cd | Box-Cox –3 | AP | Log |
As | Log | AN | Log |
Hg | Box-Cox –2 | C | Log |
Cr | Box-Cox –1.5 | S | Box-Cox –1 |
Cu | Box-Cox –2.5 | Fe2O3 | Log |
Pb | Box-Cox –6 | MgO | Log |
AK | Log | K2O | Box-Cox –2.5 |
Heavy Metal | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | C (%) | S (%) | Fe2O3 (%) | MgO (%) | K2O (%) |
---|---|---|---|---|---|---|---|---|
Cd (mg/kg) | −0.209 | −0.023 | 0.164 | 0.132 | −0.109 | 0.496 | 0.496 | 0.338 |
As (mg/kg) | −0.212 | 0.009 | −0.123 | 0.491 | 0.017 | 0.797 | 0.797 | 0.411 |
Hg (mg/kg) | −0.203 | 0.118 | 0.106 | 0.437 | 0.120 | 0.517 | 0.517 | 0.942 |
Cr (mg/kg) | −0.173 | 0.158 | 0.183 | 0.277 | 0.184 | 0.491 | 0.491 | 0.859 |
Cu (mg/kg) | −0.230 | 0.089 | −0.229 | 0.931 | 0.107 | 0.721 | 0.721 | 0.544 |
Pb (mg/kg) | −0.053 | 0.160 | 0.028 | 0.491 | 0.063 | 0.781 | 0.781 | 0.451 |
Cd | As | Hg | Cr | Cu | Pb | |
---|---|---|---|---|---|---|
Background values in Liaoning | 0.108 | 8.8 | 0.037 | 57.9 | 19.8 | 21.1 |
Chinese soil Guideline I | 0.2 | 15 | 0.15 | 90 | 35 | 35 |
Chinese soil Guideline II | 0.6 | 30 | 0.5 | 200 | 200 | 300 |
Chinese soil Guideline III | 1 | 40 | 1.5 | 400 | 400 | 500 |
Contamination Grade | Range | Explanation |
---|---|---|
Warning | (BVs in Liaoning, Guideline I] | Soil contamination is possibly over the natural level. |
Grade I | (Guidelines I, II] | Soil is polluted, but human health is still within control. |
Grade II | (Guidelines II, III] | Human health is harmed, but plants and crops can still grow normally. |
Grade III | (Guideline III, ) | Human health is destroyed, and crops and plants cannot grow normally. |
Metric | Cd | As | Hg | Cr | Cu | Pb |
---|---|---|---|---|---|---|
MAE (mg/kg) | 0.0057 | 0.3720 | 0.0043 | 6.1402 | 1.8140 | 2.4809 |
RMSE (mg/kg) | 0.0076 | 0.4809 | 0.0063 | 8.3547 | 3.1470 | 2.8495 |
p value (%) | 0.0000 | 2.7765 | 0.000 | 0.0139 | 0.7410 | 0.0000 |
MAE/mean (%) | 6.71 | 4.82 | 14.83 | 8.69 | 10.49 | 12.53 |
RMSE/mean (%) | 8.94 | 6.23 | 21.72 | 11.82 | 18.21 | 14.40 |
Metric | Cd | As | Hg | Cr | Cu | Pb |
---|---|---|---|---|---|---|
MAE (mg/kg) | 0.0058 | 0.5573 | 0.0043 | 10.1950 | 1.9881 | 2.5415 |
RMSE (mg/kg) | 0.0077 | 0.7145 | 0.0063 | 14.1709 | 3.3025 | 2.9256 |
p value (%) | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0027 | 0.0000 |
MAE/mean (%) | 6.7590 | 7.2180 | 15.5672 | 14.4230 | 11.9344 | 14.3851 |
RMSE/mean (%) | 9.0400 | 9.2546 | 22.9015 | 20.0476 | 19.8243 | 16.5592 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Jiang, S.; Jing, L.; Xue, Y. Source Apportionment of Heavy Metal Contamination in Urban-Agricultural-Aquacultural Soils near the Bohai Bay Coast, Using Land-Use Classification and Google Satellite Tracing. Remote Sens. 2022, 14, 2436. https://doi.org/10.3390/rs14102436
Zeng L, Jiang S, Jing L, Xue Y. Source Apportionment of Heavy Metal Contamination in Urban-Agricultural-Aquacultural Soils near the Bohai Bay Coast, Using Land-Use Classification and Google Satellite Tracing. Remote Sensing. 2022; 14(10):2436. https://doi.org/10.3390/rs14102436
Chicago/Turabian StyleZeng, Ling, Shan Jiang, Linhai Jing, and Yuan Xue. 2022. "Source Apportionment of Heavy Metal Contamination in Urban-Agricultural-Aquacultural Soils near the Bohai Bay Coast, Using Land-Use Classification and Google Satellite Tracing" Remote Sensing 14, no. 10: 2436. https://doi.org/10.3390/rs14102436
APA StyleZeng, L., Jiang, S., Jing, L., & Xue, Y. (2022). Source Apportionment of Heavy Metal Contamination in Urban-Agricultural-Aquacultural Soils near the Bohai Bay Coast, Using Land-Use Classification and Google Satellite Tracing. Remote Sensing, 14(10), 2436. https://doi.org/10.3390/rs14102436