Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia
Abstract
:1. Introduction
- Process the two generations of MODIS LST products (MYD11A2 and MYD21A2) for WA using the strictest quality control flag, MODLAND = 00;
- Process the VIIRS TES product VNP21A2 to provide additional data;
- Compare and contrast the monthly patterns of the three LST products for the years 2013, 2016, and 2019 over Perth city (a Mediterranean climate) as well as the vegetated, undeveloped Kimberley region (a tropical climate);
- Analyse the spatial patterns of LST and emissivity error for MYD11A2 and MYD21A2.
2. Materials and Methods
2.1. Region of Interest
2.2. Data
3. Results
3.1. Perth
3.1.1. Monthly Diurnal LST
3.1.2. Product Correlation
3.2. Kimberley Region
3.2.1. Monthly Diurnal LST
3.2.2. LST Correlation
3.3. Yearly LST Comparison
3.4. Spatial Patterns
3.5. LST Data Distribution by Percentile
4. Discussion
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth |
AppEEARS | Application for Extracting and Exploring Analysis Ready Samples |
Aqua | Satellite carrying MODIS sensor |
ATBD | Algorithm Theoretical Basis Document |
BoM | Bureau of Meteorology |
BSRN | Baseline Surface Radiation Network |
C6/V6 | Collection or Version 6 of MODIS heritage data |
CRS | Co-ordinate Reference System |
GSW | Generalised Split Window |
HDF | Hierarchical Data Format files |
JPSS | Joint Polar Satellite System |
LPDAAC | Land Process Distributed Active Archive Centre |
LST | Land Surface Temperature |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MODLAND | MODIS Land |
MYD11A2 | MODIS LST/Emissivity GSW product |
MYD21A2 | MODIS LST/Emissivity TES product |
MxD | MODIS LST (MYD or MOD) |
NASA | National Aeronautics and Space Administration |
PGE16 | Product Generation Executive code 16 |
QA/QC | Quality Assurance/Quality Control |
RMSE | Root Mean Square Error |
S-NPP | Solar Polar-orbiting Partnership satellite carrying VIIRS sensor |
SUHI | Surface Urban Heat Island |
SUHII | Surface Urban Heat Island Intensity |
Tair | Air Temperature |
TES | Temperature Emissivity Separation |
VIIRS | Visible Infrared Imaging Radiometer Suite |
VNP21A2 | VIIRS LST/Emissivity TES product |
WA | Western Australia |
WGS84 | World Geodetic System 1984 |
WVS | Water Vapour Scaling |
References
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 74, 269–280. [Google Scholar] [CrossRef]
- Hulley, G.; Islam, T.; Freepartner, R.; Malakar, N. Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature and Emissivity Product Collection 1 (ATBD); Jet Propulsion Laboratory, California: Pasadena, CA, USA, 2016. Available online: https://viirsland.gsfc.nasa.gov/PDF/VNP21_LSTE_ATBD_v2.1.pdf (accessed on 4 June 2020).
- Hulley, G.; Malakar, N.; Hughes, T.; Islam, T.; Hook, S. Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document; National Aeronautics and Space Administration Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2016.
- Hulley, G.; Freepartner, R.; Islam, T. Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature and Emissivity Product (VNP21) User Guide. Collection 1; NASA Jet Propulsion Laboratory, California: Pasadena, CA, USA, 2018. Available online: https://viirsland.gsfc.nasa.gov/PDF/VNP21_LSTE_user_guide.pdf (accessed on 3 March 2020).
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD) Version 3.3; Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, 1999. [Google Scholar]
- Vermote, E.F.; Franch, B.; Roger, J.C. Suomi-NPP VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD); V1 Re-processing (NASA Land SIPS). Ver 2.0.; Goddard Space Flight Center: Greenbelt, MA, USA, 2016.
- Wan, Z. Collection-6 MODIS Land Surface Temperature Products Users’ Guide; ERI, University of California: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Hulley, G.; Freepartner, R.; Malakar, N.; Sarkar, S. Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity Product (MxD21) Users’ Guide Collection-6; Jet Propulsion Laboratory California Institute of Technology Pasadena, California: Pasadena, CA, USA, 2016. Available online: https://emissivity.jpl.nasa.gov/downloads/examples/documents/MOD21_LSTE_User_Guide_C6.pdf (accessed on 19 May 2020).
- Masuoka, E.; Roy, D.; Wolfe, R.; Morisette, J.; Sinno, S.; Teague, M.; Saleous, N.; Devadiga, S.; Justice, C.O.; Nickeson, J. MODIS Land Data Products: Generation, Quality Assurance and Validation. Land Remote Sens. Glob. Environ. Chang. 2010, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, Y.; Kongoli, C.; Wang, Z.; Yu, P. Evaluation of the Suomi NPP VIIRS Land Surface Temperature Product; Cooperative Institute for Climate and Satellites, University of Maryland: College Park, MA, USA, 2012; STAR/NESDIS/NOAA. Information Poster. [Google Scholar]
- Liu, Y.; Yu, Y.; Wang, Z.; Tarpley, D.; Guillevic, P.; Privette, J.L.; Csiszar, I. Assessment of the Suomi NPP VIIRS Land Surface Temperature Product-Beta to Provisional Maturity; CICS, University of Maryland: College Park, MA, USA; NOAA/NESDIS Center for Satellite Applications and Research: Washington, DC, USA; IMSG: Rockville, MD, USA; Short & Associates, CICS, NC State University: Raleigh, NC, USA; NCDC: Asheville, NC, USA, 2013.
- Liu, Y.; Yu, Y.; Yu, P.; Göttsche, F.M.; Trigo, I.F. Quality Assessment of S-NPP VIIRS Land Surface Temperature Product. Remote Sens. 2015, 7, 12215–12241. [Google Scholar] [CrossRef] [Green Version]
- Malakar, N.K.; Hulley, G.C. A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data. Remote Sens. Environ. 2016, 182, 252–264. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Xiong, X.; Blonski, S.; Wu, A.; Shao, X. Radiometric Intercomparison between Suomi-NPP VIIRS and Aqua MODIS Reflective Solar Bands Using Simultaneous Nadir Overpass in the Low Latitudes. J. Atmospheric Ocean. Technol. 2013, 30, 2720–2736. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Gottsche, F.M.; Radocinski, R.; Roman, M.O.; Yunyue, Y.; et al. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Cheng, J.; Leng, P. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces. ISPRS J. Photogramm. Remote Sens. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Leng, P.; Gao, M.; Wang, C. Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. Int. J. Appl. Earth Obs. Geoinform: ITC J. 2018, 70, 84–92. [Google Scholar] [CrossRef]
- Hulley, G.C.; Malakar, N.K.; Islam, T.; Freepartner, R.J. NASA’s MODIS and VIIRS Land Surface Temperature and Emissivity Products: A Long-Term and Consistent Earth System Data Record. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 522–535. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Bechtel, B. A New Global Climatology of Annual Land Surface Temperature. Remote Sens. 2015, 7, 2850–2870. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Dong, J.; Liu, J.; Zhai, J.; Cui, Y.; He, T.; Xiao, X. Different Patterns in Daytime and Nighttime Thermal Effects of Urbanization in Beijing-Tianjin-Hebei Urban Agglomeration. Remote Sens. 2017, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Gawuc, L.; Struzewska, J. Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity. Remote Sens. 2016, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Zhan, W.; Huang, F.; Quan, J.; Hu, L.; Gao, L.; Ju, W. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products. ISPRS J. Photogramm. Remote Sens. 2018, 139, 212–227. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Wang, S.; Wang, L.; Wei, J.; Li, J.; Yu, D. A detailed comparison of MYD11 and MYD21 land surface temperature products in mainland China. Int. J. Digit. Earth 2020, 13, 1391–1407. [Google Scholar] [CrossRef]
- LP DAAC. AppEEARS Team Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Ver. 2.40. NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2020. Available online: https://lpdaacsvc.cr.usgs.gov/appeears (accessed on 29 April 2020).
- Dewan, A.; Kiselev, G.; Botje, D. Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities. Appl. Geogr. 2021, 135, 102533. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 17, 102926. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Li, X.; Messina, J.; Moore, N.J.; Fan, P.; Shortridge, A.M. MODIS land cover uncertainty in regional climate simulations. Clim. Dyn. 2017, 49, 4047–4059. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Wang, L.; Gui, X.; Zheng, Y.; Zhang, H.; Huang, X. Urbanization Effects on Vegetation and Surface Urban Heat Islands in China’s Yangtze River Basin. Remote Sens. 2017, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Lee, X.; Ermida, S.; Zhan, W. On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sens. Environ. 2021, 265, 112682. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Ardon-Dryer, K.; Huang, Y.-W.; Cziczo, D.J. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmospheric Chem. Phys. 2015, 15, 9159–9171. [Google Scholar] [CrossRef] [Green Version]
Data | Source | Type | Nominal Resolution | Date | Period | Processing | Reference |
---|---|---|---|---|---|---|---|
MODIS MYD11A2 | AQUA | LST: C/V6, Level 3 | 1 km | 2002–2020 | 8-day | GSW, classified emissivity | https://lpdaac.usgs.gov/products/myd11a2v006 (accessed on 12 December 2021) |
MYD21A2 (reprocessed) | LST: C/V6, Level 3 | 1 km | 2002–2020 | 8-day | TES, dynamic retrieval of emissivity | https://lpdaac.usgs.gov/products/myd21a2v006 (accessed on 12 December 2021) | |
VIIRS VNP21A2 | S-NPP | LST: C/V1, Level 3 | 1 km | 2012–2020 | 8-day | Same as MYD21A2 | https://lpdaac.usgs.gov/products/vnp21a2v001 (accessed on 12 December 2021) |
Year | Diurnal | MYD11A2-Day | MYD21A2-Day | MYDA2- Night | VNP21A2-Night |
---|---|---|---|---|---|
2013 | VNP21A2-day | 0.9979 | |||
MYD21A2-day | 0.9991 | 0.9971 | |||
VNP21A2-night | 0.9990 | ||||
MYD21A2-night | 0.9989 | 0.9988 | |||
2016 | VNP21A2-day | 0.9977 | |||
MYD21A2-day | 0.9971 | 0.9968 | |||
VNP21A2-night | 0.9947 | ||||
MYD21A2-night | 0.9985 | 0.9957 | |||
2019 | VNP21A2-day | 0.9977 | |||
MYD21A2-day | 0.9980 | 0.9974 | |||
VNP21A2-night | 0.9960 | ||||
MYD21A2-night | 0.9983 | 0.9963 |
Year | Diurnal | MYD11A2-Day | MYD21A2-Day | MYD21A2-Night | VNP21A2-Night |
---|---|---|---|---|---|
2013 | VNP21A2-day | 0.8895 | |||
MYD21A2-day | 0.8816 | 0.9991 | |||
VNP21A2-night | 0.9982 | ||||
MYD21A2-night | 0.9983 | 0.9893 | |||
2016 | VNP21A2-day | 0.9227 | |||
MYD21A2-day | 0.9143 | 0.9991 | |||
VNP21A2-night | 0.9890 | ||||
MYD21A2-night | 0.9922 | 0.9964 | |||
2019 | VNP21A2-day | 0.8669 | |||
MYD21A2-day | 0.8329 | 0.9899 | |||
VNP21A2-night | 0.9898 | ||||
MYD21A2-night | 0.9913 | 0.9984 |
RMSE | |||||||
---|---|---|---|---|---|---|---|
Annual Mean (Δ °C) | VNP21A2 (Δ °C) | MYD21A2 (Δ °C) | |||||
Area | Year | Day LST Mean (Δ °C) | Night LST Mean (Δ °C) | Day | Night | Day | Night |
Perth | 2013 | 1.29 | 0.81 | 0.746 | 0.834 | 1.219 | 0.863 |
2016 | 1.47 | 0.86 | 0.888 | 0.931 | 1.445 | 0.713 | |
2019 | 1.21 | 0.99 | 0.786 | 0.962 | 1.192 | 1.177 | |
Kimberley | 2013 | 7.77 | 2.59 | 8.245 | 2.480 | 8.557 | 7.796 |
2016 | 6.45 | 2.31 | 6.966 | 2.349 | 7.376 | 6.675 | |
2019 | 6.85 | 2.25 | 7.275 | 2.362 | 7.882 | 7.219 |
Year | MYD11A2-Day | MYD11A2-Night | VNP21A2-Day | VNP21A2-Night | MYD21A2-Day | MYD21A2-Night |
---|---|---|---|---|---|---|
25th Percentile | 40.39 | 18.18 | 44.50 | 19.05 | 44.43 | 18.94 |
10th Percentile | 39.09 | 15.45 | 41.28 | 16.34 | 41.39 | 15.57 |
1st Percentile | 37.68 | 15.00 | 39.67 | 15.53 | 39.88 | 15.39 |
Median | 42.89 | 23.35 | 51.25 | 25.39 | 52.99 | 25.69 |
97.7th Percentile | 50.89 | 26.43 | 59.13 | 30.13 | 59.68 | 30.56 |
90th Percentile | 50.44 | 25.66 | 57.41 | 29.86 | 57.53 | 30.09 |
75th Percentile | 47.24 | 24.94 | 55.53 | 27.51 | 55.72 | 28.37 |
Maximum | 51.00 | 26.67 | 59.67 | 30.20 | 60.36 | 30.71 |
Minimum | 37.52 | 14.95 | 39.51 | 15.44 | 39.72 | 15.37 |
Mean | 43.83 | 21.61 | 50.20 | 23.59 | 50.65 | 23.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botje, D.; Dewan, A.; Chakraborty, T. Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia. Remote Sens. 2022, 14, 2296. https://doi.org/10.3390/rs14102296
Botje D, Dewan A, Chakraborty T. Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia. Remote Sensing. 2022; 14(10):2296. https://doi.org/10.3390/rs14102296
Chicago/Turabian StyleBotje, Dirk, Ashraf Dewan, and TC Chakraborty. 2022. "Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia" Remote Sensing 14, no. 10: 2296. https://doi.org/10.3390/rs14102296
APA StyleBotje, D., Dewan, A., & Chakraborty, T. (2022). Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia. Remote Sensing, 14(10), 2296. https://doi.org/10.3390/rs14102296