Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Materials
3. Methods
3.1. Spectral Analysis and Normalized Difference Indexes Development
3.2. Enhanced Blue and Red Building Indexes
3.3. Logical Blue and Red Building Indexes
3.4. Blue and Red Building Extraction Method
- Step 1: Collect Sentinel-2 A/B S2MSIL2A images with cloud cover ratio lower than 10% that coverage for the whole of China from Copernicus Open Access Hub for 2020;
- Step 2: Obtain the preliminary maps for blue and red CCSS buildings by applying Equations (5) and (6) on the median images of S2MSIL2A image collections;
- Step 3: Produce the urban area map for 2020 by fusion of GHS-S2Net-2018 and GLC-FC30-2020 products;
- Step 4: Obtain the refined maps for blue and red CCSS buildings by masking the preliminary maps produced by step 2 with the urban area map produced by step 3;
- Step 5: Evaluate the performance of the proposed methods on the city sites that selected over different countries with various landscapes;
- Step 6: Analysis for distributions and patterns of blue and red CCSS buildings for China in 2020.
3.5. Experimental Setups
4. Results and Discussion
4.1. Visual Evaluation of NDBSI, NDRSI, EBBI, and ERBI Indexes
4.2. Results of LBBI and LRBI
4.3. Distributions and Patterns of Blue and Red CCSS Buildings for China
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- United Nations. World Population Prospects: The 2017 Revision; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Eom, J.; Yu, S.; Asrar, G.R. Projecting global urban area growth through 2100 based on historical time series data and future Shared Socioeconomic Pathways. Earths Future 2019, 7, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Govindan, K.; Shankar, K.M.; Kannan, D. Sustainable material selection for construction industry–A hybrid multi criteria decision making approach. Renew. Sustain. Energy Rev. 2016, 55, 1274–1288. [Google Scholar] [CrossRef]
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Hanink, D.M.; Liu, Y.; Zhai, R. Analyzing horizontal and vertical urban expansions in three East Asian megacities with the SS-coMCRF model. Landsc. Urban Plan. 2018, 177, 114–127. [Google Scholar] [CrossRef]
- Fan, P.; Ouyang, Z.; Nguyen, D.D.; Nguyen, T.T.H.; Park, H.; Chen, J. Urbanization, economic development, environmental and social changes in transitional economies: Vietnam after Doimoi. Landsc. Urban Plan. 2019, 187, 145–155. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Satterthwaite, D. Interactions between urbanization and global environmental change. Curr. Opin. Environ. Sustain. 2010, 2, 127–128. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Gao, B.; Huang, Q.; Ma, Q.; Dou, Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Amaya-Espinel, J.D.; Hostetler, M.; Henríquez, C.; Bonacic, C. The influence of building density on Neotropical bird communities found in small urban parks. Landsc. Urban Plan. 2019, 190, 103578. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. For. Ecol. Manag. 2019, 446, 214–225. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Urban Impervious Surface Detection from Remote Sensing Images: A review of the methods and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 64–93. [Google Scholar] [CrossRef]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Qiu, T.; Song, C.; Zhang, Y.; Liu, H.; Vose, J.M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens. Environ. 2020, 236, 111477. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Taubenböck, H.; Roth, A.; Esch, T.; Felbier, A.; Müller, A.; Dech, S. The vision of mapping the global urban footprint using the TerraSAR-X and TanDEM-X mission. In Urban and Regional Data Management; CRC Press: Boca Raton, FL, USA, 2011; pp. 243–251. [Google Scholar]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space–The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Sinha, P.; Verma, N.K.; Ayele, E. Urban built-up area extraction and change detection of Adama municipal area using time-series Landsat images. Int. J. Adv. Remote Sens. GIS 2016, 5, 1886–1895. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Tong, X.; Liu, S. A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data. Remote Sens. 2019, 11, 2516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Weng, Q.; Shao, Z. An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015. Remote Sens. Environ. 2017, 201, 99–114. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 2018, 238, 110929. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Che, M.; Gamba, P. Intra-urban change analysis using Sentinel-1 and Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1134–1142. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Zhou, Y.; Liu, H.; Yang, C.; Shi, K.; Wu, J. Mapping global urban areas from 2000 to 2012 using time-series nighttime light data and MODIS products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1143–1153. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, S.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.P.; Marconcini, M.; Mitraka, Z.; Stagakis, S.; Crawford, B.; Olofson, F.; et al. Urban energy exchanges monitoring from space. Sci. Rep. 2018, 8, 1–8. [Google Scholar]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. SUSM: A scenario-based urban growth simulation model using remote sensing data. Eur. J. Remote Sens. 2019, 52 (Suppl. S2), 26–41. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Davidson, F. Planning for performance: Requirements for sustainable development. Habitat Int. 1996, 20, 445–462. [Google Scholar] [CrossRef]
- Colding, J. ‘Ecological land-use complementation’ for building resilience in urban ecosystems. Landsc. Urban Plan. 2007, 81, 46–55. [Google Scholar] [CrossRef]
- Van der Linden, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Kobetičová, K.; Černý, R. Terrestrial eutrophication of building materials and buildings: An emerging topic in environmental studies. Sci. Total Environ. 2019, 689, 1316–1328. [Google Scholar] [CrossRef]
- Kanniyapan, G.; Nesan, L.J.; Mohammad, I.S.; Tan, S.K.; Ponniah, V. Selection criteria of building material for optimising maintainability. Constr. Build. Mater. 2019, 221, 651–660. [Google Scholar] [CrossRef]
- Cha, G.W.; Moon, H.J.; Kim, Y.C.; Hong, W.H.; Jeon, G.Y.; Yoon, Y.R.; Hwang, C.; Hwang, J.H. Evaluating recycling potential of demolition waste considering building structure types: A study in South Korea. J. Clean. Prod. 2020, 256, 120385. [Google Scholar] [CrossRef]
- Westermann, P.; Deb, C.; Schlueter, A.; Evins, R. Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data. Appl. Energy 2020, 264, 114715. [Google Scholar] [CrossRef]
- Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS J. Photogramm. Remote Sens. 2014, 93, 145–156. [Google Scholar] [CrossRef]
- Grinias, I.; Panagiotakis, C.; Tziritas, G. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2016, 122, 145–166. [Google Scholar] [CrossRef]
- Du, S.; Luo, L.; Cao, K.; Shu, M. Extracting building patterns with multilevel graph partition and building grouping. ISPRS J. Photogramm. Remote Sens. 2016, 122, 81–96. [Google Scholar] [CrossRef]
- He, X.; Zhang, X.; Xin, Q. Recognition of building group patterns in topographic maps based on graph partitioning and random forest. ISPRS J. Photogramm. Remote Sens. 2018, 136, 26–40. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Xin, Q.; Sun, Y.; Zhang, P. Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS J. Photogramm. Remote Sens. 2019, 151, 91–105. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Q.; Zhu, X.X. Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS J. Photogramm. Remote Sens. 2020, 159, 184–197. [Google Scholar] [CrossRef]
- Rodríguez-Álvarez, J. Urban Energy Index for Buildings (UEIB): A new method to evaluate the effect of urban form on buildings’ energy demand. Landsc. Urban Plan. 2016, 148, 170–187. [Google Scholar] [CrossRef]
- Custódio, J.V.; Agostinho, S.M.; Simões, A.M. Electrochemistry and surface analysis of the effect of benzotriazole on the cut edge corrosion of galvanized steel. Electrochim. Acta 2010, 55, 5523–5531. [Google Scholar] [CrossRef]
- Hernández-Pérez, I.; Zavala-Guillén, I.; Xamán, J.; Belman-Flores, J.M.; Macias-Melo, E.V.; Aguilar-Castro, K.M. Test box experiment to assess the impact of waterproofing materials on the energy gain of building roofs in Mexico. Energy 2019, 186, 115847. [Google Scholar] [CrossRef]
- Torres-Quezada, J.; Coch, H.; Isalgué, A. Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy Build. 2019, 188, 200–208. [Google Scholar] [CrossRef]
- Hu, J.; Chen, W.; Qu, Y.; Yang, D. Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance. Eng. Struct. 2020, 210, 110292. [Google Scholar] [CrossRef]
- Lee, C.Y.; Kaneko, S.; Sharifi, A. Effects of building types and materials on household electricity consumption in Indonesia. Sustain. Cities Soc. 2020, 54, 101999. [Google Scholar] [CrossRef]
- Xamán, J.; Rodriguez-Ake, A.; Zavala-Guillén, I.; Hernández-Pérez, I.; Arce, J.; Sauceda, D. Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions. Renew. Energy 2020, 149, 773–785. [Google Scholar] [CrossRef]
- Xie, S.; Ji, Z.; Zhu, L.; Zhang, J.; Cao, Y.; Chen, J.; Liu, R.; Wang, J. Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 2020, 27, 100963. [Google Scholar] [CrossRef]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 2007, 111, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Chisense, C.; Hahn, M.; Engels, J. Classification of roof materials using hyperspectral data. International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2012, 39, 103. [Google Scholar]
- Yuan, L.; Guo, J.; Wang, Q. Automatic classification of common building materials from 3D terrestrial laser scan data. Autom. Constr. 2020, 110, 103017. [Google Scholar] [CrossRef]
- Guo, X.; Li, P. Mapping plastic materials in an urban area: Development of the normalized difference plastic index using WorldView-3 superspectral data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 214–216. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Yang, S.; Yan, H. Spatial Distribution Characteristics of Color Steel Plate Buildings in Lanzhou City; Modern Environmental Science and Engineering: Brooklyn, NY, USA, 2019; p. 583. [Google Scholar]
- Wang, J.; Yang, W.; Yang, S.; Ma, J. Research on spatial distribution characteristics of color steel buildings in Anniing district of Lanzhou. J. Lanzhou Jiaotong Univ. 2019, 38, 110–114. [Google Scholar]
- Yu, B.; Liu, H.; Wu, J.; Hu, Y.; Zhang, L. Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landsc. Urban Plan. 2010, 98, 210–219. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, X.; Wen, D.; Li, J. Urban building density estimation from high-resolution imagery using multiple features and support vector regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3265–3280. [Google Scholar] [CrossRef]
- Maltezos, E.; Doulamis, A.; Doulamis, N.; Ioannidis, C. Building extraction from LiDAR data applying deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 16, 155–159. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L.; Greidanus, H. Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1487–1504. [Google Scholar] [CrossRef]
- Nie, X.; Qiao, H.; Zhang, B. A variational model for PolSAR data speckle reduction based on the Wishart distribution. IEEE Trans. Image Processing 2015, 24, 1209–1222. [Google Scholar]
- Zheng, J.; Zeng, C.; Zhang, H. Scattering Modeling of Urban Oriented Buildings in PolSAR images by Using Adaptive Statistical Distribution. IEEE Access 2019, 7, 147119–147128. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Ge, Y.; Ma, L.; Tuheti, A.; Zou, S.; Abuduwaili, J. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine platform. Remote Sens. 2020, 12, 3430. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Fan, S.; Sun, C. Production Technology for Colour Coated Steel Sheet. Angang Technol. 2004, 4, 1. [Google Scholar]
- Annual Research and Consultation Report of Panorama Survey and Investment Strategy on China Strategy. Available online: https://www.chinairn.com/report/20210526.html (accessed on 25 April 2021).
- Ma, J.; Yang, S.; Jia, X.; Yan, R. Temporal and spatial change of color steel sheds in Anning district of Lanzhou city. Sci. Surv. Mapp. 2018, 43, 34–37. [Google Scholar]
- Wang, S.; Ju, W.; Peñuelas, J.; Cescatti, A.; Zhou, Y.; Fu, Y.; Huete, A.; Liu, M.; Zhang, Y. Urban− rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 2019, 3, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.S.; Martínez, L.; Chang, J.P.; Wang, X.J.; Xionge, S.H.; Chin, K.S. Sustainable building material selection: A QFD-and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Eng. Appl. Artif. Intell. 2019, 85, 783–807. [Google Scholar] [CrossRef]
- Martin Schaefer, H.; Schaefer, V.; Vorobyev, M. Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am. Nat. 2007, 169, S159–S169. [Google Scholar] [CrossRef]
- Robb, M.J.; Ku, S.Y.; Brunetti, F.G.; Hawker, C.J. A renaissance of color: New structures and building blocks for organic electronics. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1263–1271. [Google Scholar] [CrossRef]
- Ren, J.; Liang, H.; Chan, F.T. Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method. Technol. Forecast. Soc. Change 2017, 116, 29–39. [Google Scholar] [CrossRef]
- Leveau, L.M. Urbanization induces bird color homogenization. Landsc. Urban Plan. 2019, 192, 103645. [Google Scholar] [CrossRef]
- Li, P.; Yang, S.; Yao, H.; Yang, M.; Yong, W. Research on Extraction of the Urban Color Steel Shed Based on High-resolution Remote Sensing Images. Geospat. Inf. 2017, 15, 13–18. [Google Scholar]
- Ye, C.M.; Cui, P.; Pirasteh, S.; Li, J.; Li, Y. Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery. J. Zhejiang Univ.-Sci. A 2017, 18, 984–990. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Corbane, C.; Syrris, V.; Sabo, F.; Politis, P.; Melchiorri, M.; Pesaresi, M.; Soille, P.; Kemper, T. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Comput. Appl. 2021, 33, 6697–6720. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Babaei, H.; Janalipour, M.; Tehrani, N.A. A simple, robust, and automatic approach to extract water body from Landsat images (case study: Lake Urmia, Iran). J. Water Clim. Change 2021, 12, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Escadafal, R. Remote sensing of soil color: Principles and applications. Remote Sens. Rev. 1993, 7, 261–279. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Maussang, F.; Chanussot, J.; Hetet, A. Automated segmentation of SAS images using the mean-standard deviation plane for the detection of underwater mines. In Proceedings of the Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, CA, USA, 22–26 September 2003; Volume 4, pp. 2155–2160. [Google Scholar]
Site No. | Country | City Name | Scene Center Location | Spacecraft Name | Orbit Number | Sensing Time | |
---|---|---|---|---|---|---|---|
Latitude | Longitude | ||||||
1 | China | Urumqi | 43°43′24″ | 87°35′20″ | Sentinel-2A | 19 | 2020-10-15T08:04:29 |
2 | China | Urumqi | 43°55′2″ | 87°21′60″ | Sentinel-2A | 19 | 2020-10-15T08:04:29 |
3 | China | Urumqi | 43°50′25″ | 87°18′17″ | Sentinel-2A | 19 | 2020-10-15T08:04:29 |
4 | China | Urumqi | 43°43′57″ | 87°22′12″ | Sentinel-2A | 19 | 2020-10-15T08:04:29 |
5 | China | Chuzhou | 32°18′57″ | 118°23′10″ | Sentinel-2A | 132 | 2019-09-19T08:23:30 |
6 | China | Haerbin | 45°37′12″ | 126°37′14″ | Sentinel-2A | 89 | 2020-10-20T05:26:23 |
7 | China | Hefei | 31°41′49″ | 117°11′33″ | Sentinel-2A | 132 | 2020-10-23T05:38:54 |
8 | China | Tianjin | 39°21′8″ | 117°43′40″ | Sentinel-2B | 32 | 2020-09-01T05:56:11 |
9 | China | Tianjin | 39°16′49″ | 117°49′24″ | Sentinel-2B | 32 | 2020-09-01T05:56:11 |
10 | China | Xining | 36°41′43″ | 101°44′56″ | Sentinel-2A | 4 | 2020-04-27T08:09:55 |
11 | China | Changchun | 43°54′2″ | 125°26′42″ | Sentinel-2A | 89 | 2020-10-20T05:26:23 |
12 | China | Yinchuan | 38°27′33″ | 106°6′32″ | Sentinel-2A | 104 | 2020-05-14T08:36:42 |
13 | China | Shihezi | 44°25′56″ | 86°5′14″ | Sentinel-2B | 19 | 2020-07-22T09:30:27 |
14 | China | Shenyang | 41°57′2″ | 123°32′56″ | Sentinel-2B | 89 | 2020-06-07T05:18:53 |
15 | China | Shenyang | 41°45′46″ | 123°14′23″ | Sentinel-2B | 89 | 2020-06-07T05:18:53 |
16 | China | Shijiazhuang | 38°4′29″ | 114°2′10″ | Sentinel-2A | 75 | 2020-09-19T06:06:33 |
17 | Iran | Tehran | 35°27′41″ | 51°21′46″ | Sentinel-2B | 6 | 2020-09-19T09:56:38 |
18 | Iran | Caspian Industral Twon | 36°11′9″ | 50°16′47″ | Sentinel-2A | 6 | 2020-10-24T09:47:55 |
19 | Kazakhstan | Nursurtan | 51°10′17″ | 71°31′6″ | Sentinel-2A | 34 | 2020-10-16T08:53:32 |
20 | South Korea | Pusan | 128°51′22″ | 35°05′45″ | Sentinel-2A | 103 | 2020-04-24T02:07:01 |
21 | South Korea | Inchon | 126°37′23″ | 37°32′52″ | Sentinel-2A | 3 | 2020-10-24T04:59:15 |
22 | Maynmaer | Yangon | 96°17′28″ | 16°50′17″ | Sentinel-2A | 4 | 2020-12-13T04:01:51 |
23 | Malaysia | Kuala Lumpur | 2°57′24″ | 101°19′37″ | Sentinel-2A | 18 | 2020-02-28T07:41:37 |
24 | Cambodia | Phnom Penh | 11°27′53″ | 104°54′15″ | Sentinel-2A | 118 | 2019-12-07T07:19:12 |
25 | Vietnam | Ho Chi Minh City | 106°28′43″ | 10°46′44″ | Sentinel-2A | 118 | 2020-01-21T03:20:39 |
26 | South Africa | Pretoria | −25°49′15″ | 28°11′41″ | Sentinel-2A | 135 | 2020-10-23T10:15:14 |
27 | Rwanda | Kigali | −1°57′3.85″ | 30°9′27.27″ | Sentinel-2A | 78 | 2019-09-15T08:06:11 |
28 | Lesotho | Maseru | −29°19′48.12″ | 27°28′3″ | Sentinel-2A | 135 | 2020-09-13T10:23:18 |
29 | Zimbabwe | Harare | −17°50′12.58″ | 27°28′2.74″ | Sentinel-2A | 135 | 2020-10-28T07:50:29 |
30 | Kenya | Nairobi | −1°20′7″ | 36°53′12″ | Sentinel-2B | 92 | 2020-10-05T10:20:29 |
31 | Ethiopia | Addis Ababa | 8°46′1″ | 38°55′42″ | Sentinel-2B | 92 | 2020-01-19T10:14:10 |
32 | Uganda | Kampala | 0°21′21″ | 32°49′23″ | Sentinel-2A | 35 | 2019-12-31T10:42:04 |
Indexes | NDBBI | NDRBI | EBBI | ERBI | LBBI | LRBI | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaluation Metrics | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) |
1 | 98.01 | 0.68 | 45.70 | 4.10 | 94.88 | 0.16 | 90.62 | 0.47 | 98.22 | 0.69 | 42.14 | 10.48 | 97.64 | 0.29 | 82.54 | 7.98 | 98.35 | 0.72 | 4.53 | 40.84 | 99.80 | 0.82 | 14.45 | 20.60 |
2 | 98.52 | 0.87 | 21.38 | 1.14 | 92.01 | 0.22 | 86.39 | 0.00 | 97.82 | 0.76 | 15.45 | 28.33 | 97.60 | 0.45 | 67.78 | 17.73 | 99.57 | 0.96 | 1.06 | 6.30 | 99.92 | 0.97 | 3.50 | 3.00 |
3 | 98.57 | 0.56 | 58.71 | 11.91 | 93.89 | 0.36 | 76.28 | 0.07 | 97.31 | 0.30 | 79.04 | 43.03 | 97.14 | 0.45 | 63.99 | 35.16 | 99.19 | 0.69 | 11.25 | 42.94 | 99.25 | 0.80 | 20.69 | 18.96 |
4 | 96.99 | 0.65 | 50.42 | 0.04 | 96.99 | 0.65 | 50.42 | 0.04 | 98.71 | 0.81 | 29.43 | 3.29 | 99.62 | 0.39 | 71.61 | 35.18 | 98.12 | 0.75 | 0.08 | 38.86 | 99.94 | 0.84 | 14.98 | 17.14 |
5 | 92.88 | 0.48 | 66.23 | 0.67 | 93.95 | 0.38 | 75.26 | 0.38 | 97.38 | 0.70 | 40.55 | 11.45 | 97.23 | 0.54 | 59.34 | 15.42 | 97.21 | 0.71 | 43.23 | 2.04 | 98.93 | 0.71 | 23.64 | 32.88 |
Average | 96.99 | 0.65 | 48.49 | 3.57 | 94.34 | 0.35 | 75.79 | 0.19 | 97.89 | 0.65 | 41.32 | 19.32 | 97.85 | 0.42 | 69.05 | 22.29 | 98.49 | 0.77 | 12.03 | 26.20 | 99.57 | 0.83 | 15.45 | 18.52 |
Standard deviation | 2.39 | 0.15 | 17.07 | 4.91 | 1.81 | 0.19 | 15.62 | 0.22 | 0.59 | 0.20 | 23.64 | 16.13 | 1.02 | 0.09 | 8.80 | 12.29 | 0.93 | 0.11 | 17.98 | 20.21 | 0.45 | 0.09 | 7.72 | 10.65 |
Methods | LBBI | LRBI | OCSVM-BB | OCSVM-RB | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaluation Metrics | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | OA (%) | Kappa | CE (%) | OE (%) | |
Site No. | 1 | 98.35 | 0.72 | 4.53 | 40.84 | 99.80 | 0.82 | 14.45 | 20.60 | 99.13 | 0.80 | 15.78 | 22.76 | 99.86 | 0.86 | 8.45 | 18.61 |
2 | 99.57 | 0.96 | 1.06 | 6.30 | 99.92 | 0.97 | 3.50 | 3.00 | 98.99 | 0.90 | 8.16 | 9.95 | 99.68 | 0.86 | 9.52 | 17.77 | |
3 | 99.19 | 0.69 | 11.25 | 42.94 | 99.25 | 0.80 | 20.69 | 18.96 | 99.67 | 0.91 | 9.40 | 8.03 | 99.54 | 0.74 | 9.93 | 37.04 | |
4 | 98.12 | 0.75 | 0.08 | 38.86 | 99.94 | 0.84 | 14.98 | 17.14 | 99.41 | 0.90 | 9.90 | 10.09 | 99.94 | 0.81 | 8.91 | 26.71 | |
5 | 98.59 | 0.87 | 6.19 | 17.23 | 99.87 | 0.93 | 8.95 | 4.55 | 98.57 | 0.85 | 7.93 | 19.17 | 99.89 | 0.94 | 2.45 | 9.60 | |
6 | 99.06 | 0.91 | 2.03 | 13.57 | 99.92 | 0.96 | 2.92 | 4.86 | 98.01 | 0.80 | 15.23 | 23.06 | 99.77 | 0.89 | 13.86 | 8.33 | |
7 | 99.65 | 0.95 | 1.64 | 7.95 | 99.99 | 0.99 | 1.43 | 0.10 | 99.44 | 0.92 | 5.99 | 10.24 | 99.95 | 0.96 | 4.67 | 2.49 | |
8 | 98.26 | 0.81 | 12.07 | 23.87 | 99.52 | 0.83 | 17.07 | 17.11 | 97.94 | 0.74 | 19.74 | 29.59 | 99.47 | 0.79 | 14.00 | 25.72 | |
9 | 99.05 | 0.76 | 5.80 | 35.45 | 99.87 | 0.84 | 16.64 | 14.41 | 99.32 | 0.75 | 8.43 | 35.34 | 99.88 | 0.84 | 3.38 | 25.62 | |
10 | 98.15 | 0.75 | 22.26 | 26.17 | 99.95 | 0.92 | 10.84 | 4.39 | 98.12 | 0.72 | 21.54 | 32.05 | 99.96 | 0.93 | 1.82 | 11.86 | |
11 | 99.16 | 0.93 | 0.71 | 11.17 | 99.95 | 0.93 | 2.12 | 11.19 | 99.11 | 0.93 | 6.69 | 7.30 | 99.96 | 0.94 | 2.89 | 9.25 | |
12 | 98.74 | 0.90 | 7.77 | 10.17 | 99.96 | 0.91 | 11.51 | 6.10 | 98.55 | 0.89 | 9.89 | 11.21 | 99.97 | 0.92 | 0.94 | 13.42 | |
13 | 98.84 | 0.83 | 7.92 | 23.66 | 99.95 | 0.98 | 2.85 | 1.17 | 98.40 | 0.72 | 21.22 | 31.82 | 99.71 | 0.86 | 7.84 | 18.80 | |
14 | 99.03 | 0.88 | 9.72 | 12.31 | 98.91 | 0.90 | 16.46 | 0.41 | 99.51 | 0.96 | 3.00 | 4.66 | 99.24 | 0.91 | 6.43 | 11.54 | |
15 | 97.22 | 0.88 | 3.99 | 16.22 | 99.89 | 0.87 | 22.12 | 1.36 | 98.06 | 0.91 | 7.88 | 7.85 | 99.91 | 0.89 | 2.56 | 18.23 | |
16 | 98.25 | 0.85 | 6.08 | 20.43 | 99.70 | 0.85 | 17.14 | 12.64 | 98.63 | 0.87 | 8.85 | 15.48 | 99.77 | 0.88 | 9.74 | 13.02 | |
17 | 99.05 | 0.85 | 8.96 | 19.79 | 99.39 | 0.84 | 21.29 | 8.09 | 99.16 | 0.85 | 12.30 | 16.11 | 99.51 | 0.88 | 10.30 | 12.70 | |
18 | 99.88 | 0.96 | 2.22 | 4.92 | 99.91 | 0.97 | 3.62 | 2.17 | 99.82 | 0.94 | 3.98 | 6.92 | 99.86 | 0.95 | 2.53 | 6.50 | |
19 | 99.64 | 0.79 | 4.37 | 32.66 | 99.74 | 0.81 | 17.57 | 19.82 | 99.37 | 0.28 | 21.14 | 83.06 | 99.35 | 0.12 | 17.98 | 93.39 | |
20 | 97.41 | 0.85 | 8.06 | 18.16 | 99.48 | 0.76 | 34.10 | 10.27 | 97.28 | 0.83 | 11.95 | 18.80 | 99.58 | 0.82 | 14.95 | 20.17 | |
21 | 98.89 | 0.77 | 1.54 | 35.62 | 99.97 | 0.94 | 4.98 | 6.60 | 99.43 | 0.84 | 9.29 | 20.48 | 99.93 | 0.86 | 1.67 | 23.38 | |
22 | 98.97 | 0.89 | 1.85 | 17.67 | 99.89 | 0.92 | 12.13 | 3.86 | 98.18 | 0.78 | 16.74 | 25.50 | 99.85 | 0.89 | 6.89 | 13.94 | |
23 | 99.31 | 0.83 | 3.28 | 26.10 | 99.91 | 0.82 | 22.12 | 14.21 | 99.46 | 0.84 | 11.50 | 18.78 | 99.93 | 0.86 | 7.73 | 20.28 | |
24 | 99.17 | 0.69 | 5.56 | 45.32 | 99.93 | 0.92 | 8.05 | 7.29 | 99.47 | 0.70 | 20.08 | 37.69 | 99.93 | 0.92 | 4.14 | 11.46 | |
25 | 97.95 | 0.87 | 6.42 | 15.87 | 99.48 | 0.77 | 33.70 | 7.33 | 97.97 | 0.87 | 9.80 | 14.57 | 99.66 | 0.87 | 14.40 | 10.31 | |
26 | 99.91 | 0.78 | 7.38 | 33.07 | 99.86 | 0.88 | 12.58 | 10.95 | 99.84 | 0.86 | 10.68 | 16.02 | 99.91 | 0.65 | 13.50 | 47.97 | |
27 | 99.84 | 0.88 | 5.14 | 18.03 | 99.75 | 0.83 | 3.50 | 27.42 | 99.80 | 0.82 | 10.71 | 23.38 | 99.71 | 0.73 | 13.62 | 36.09 | |
28 | 99.82 | 0.89 | 9.86 | 11.58 | 99.88 | 0.74 | 7.80 | 37.90 | 99.55 | 0.66 | 9.97 | 48.10 | 99.91 | 0.69 | 11.17 | 43.39 | |
29 | 99.79 | 0.80 | 2.47 | 32.19 | 99.85 | 0.80 | 8.81 | 27.87 | 99.83 | 0.77 | 11.40 | 31.20 | 99.89 | 0.81 | 7.48 | 27.34 | |
30 | 99.19 | 0.87 | 10.62 | 15.30 | 99.85 | 0.87 | 19.75 | 4.84 | 99.05 | 0.84 | 14.23 | 17.56 | 99.81 | 0.84 | 10.02 | 21.40 | |
31 | 99.44 | 0.93 | 4.36 | 8.04 | 99.95 | 0.89 | 10.47 | 10.98 | 98.10 | 0.73 | 8.77 | 37.53 | 99.86 | 0.65 | 28.87 | 39.83 | |
32 | 99.86 | 0.94 | 4.41 | 7.14 | 99.93 | 0.89 | 12.33 | 8.70 | 99.25 | 0.63 | 21.86 | 46.02 | 99.87 | 0.77 | 9.87 | 32.45 | |
Average | 98.98 | 0.85 | 5.93 | 21.52 | 99.79 | 0.88 | 13.01 | 10.82 | 98.95 | 0.81 | 12.00 | 23.13 | 99.78 | 0.82 | 8.83 | 22.77 | |
Standard deviation | 0.72 | 0.08 | 4.43 | 11.69 | 0.25 | 0.07 | 8.40 | 8.92 | 0.70 | 0.13 | 5.27 | 15.93 | 0.19 | 0.15 | 5.86 | 17.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samat, A.; Gamba, P.; Wang, W.; Luo, J.; Li, E.; Liu, S.; Du, P.; Abuduwaili, J. Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sens. 2022, 14, 230. https://doi.org/10.3390/rs14010230
Samat A, Gamba P, Wang W, Luo J, Li E, Liu S, Du P, Abuduwaili J. Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sensing. 2022; 14(1):230. https://doi.org/10.3390/rs14010230
Chicago/Turabian StyleSamat, Alim, Paolo Gamba, Wei Wang, Jieqiong Luo, Erzhu Li, Sicong Liu, Peijun Du, and Jilili Abuduwaili. 2022. "Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images" Remote Sensing 14, no. 1: 230. https://doi.org/10.3390/rs14010230
APA StyleSamat, A., Gamba, P., Wang, W., Luo, J., Li, E., Liu, S., Du, P., & Abuduwaili, J. (2022). Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images. Remote Sensing, 14(1), 230. https://doi.org/10.3390/rs14010230