Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar
Abstract
:1. Introduction
1.1. Objective and Broader Importance
1.2. Background and Related Literature
2. Materials and Methods
2.1. Deep Learning Model
2.2. Pattern and Statistical Analyses
3. Results
3.1. Deep Learning Model
3.2. Pattern and Statistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowens, A. Underwater Archaeology: The NAS Guide to Principles and Practice, 2nd ed.; Blackwell Publishing: Chichester, UK, 2011. [Google Scholar]
- Goggin, J. Underwater archaeology: Its nature and limitations. Am. Antiq. 1960, 25, 348–354. [Google Scholar] [CrossRef]
- McCarthy, J.K.; Benjamin, J.; Winton, T.; van Duivenvoorde, W. 3D Recoding and Interpretation for Marine Archaeology; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- Wickham-Jones, C. Studying Scientific Archaeology: Landscape Beneath the Waves: The Archaeological Investigation of Underwater Landscapes; Oxbow: Oxford, UK, 2019; Volume 4. [Google Scholar]
- Drap, P.; Papini, O.; Merad, D.; Pasquet, J.; Royer, J.-P.; Nawaf, M.M.; Saccone, M.; Ben Ellefi, M.; Chemisky, B.; Seinturier, J.; et al. Deepwater archaeological survey: An interdisciplinary and complex process. In 3D Recording and Interpretation for Maritime Archaeology; McCarthy, J.K., Benjamin, J., Winton, T., van Duivenvoorde, W., Eds.; Springer: Cham, Switzerland, 2019; pp. 135–153. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S. Object-based image analysis: A review of developments and future directions of automated feature detection in archaeology. Archaeol. Prospect. 2018, 26, 155–163. [Google Scholar] [CrossRef]
- Davis, D.S. Defining what we study: The contribution of machine automation in archaeological research. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00152. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Rosenzweig, M.S. Confronting the Present: Archaeology in 2019. Am. Anthropol. 2020, 122, 284–305. [Google Scholar] [CrossRef]
- Sevara, C.; Pregesbauer, M.; Doneus, M.; Verhoeven, G.; Trinks, I. Pixel versus object–A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. J. Archaeol. Sci. Rep. 2016, 5, 485–498. [Google Scholar] [CrossRef]
- Caspari, G.; Crespo, P. Convolutional neural networks for archaeological site detection–Finding “princely” tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Pasquet, J.; Demesticha, S.; Skarlatos, D.; Merad, D.; Drap, P. Amphora detection based on a gradient weighted error in a convolutional neural network. In Proceedings of the IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, Lecce, Italy, 23–25 October 2017. [Google Scholar]
- Somrak, M.; Dzeroski, S.; Kokalj, Z. Learning to classify structures in ALS-derived visualizations of ancient Maya settlements with CNN. Remote Sens. 2020, 12, 2215. [Google Scholar] [CrossRef]
- Trier, O.D.; Cowley, D.C.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Van der Vaart, V.; Wouter, B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F. Deep Learning with Python; Manning Publications Co.: New York, NY, USA, 2018. [Google Scholar]
- Nayak, N.; Nara, M.; Gambin, T.; Wood, Z.; Clark, C.M. Machine learning techniques for AUV side scan sonar data feature extraction as applied to intelligent search for underwater archaeology sites. Field Serv. Robot. 2021, 16, 219–233. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Chu, Z.; Yang, Y.; Shi, J. Active learning for recognition of shipwreck target in side-scan sonar image. Remote Sens. 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Wölff, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.I.; Jakobsson, M.; Jencks, J.; Johnstone, G.; et al. Seafloor mapping—The challenge of a truly global bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- NOAA Dataviewer. Available online: https://coast.noaa.gov/dataviewer/#/lidar/search/ (accessed on 30 March 2021).
- NOAA Wrecks and Obstructions Database. Available online: https://nauticalcharts.noaa.gov/data/wrecks-and-obstructions.html (accessed on 30 March 2021).
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2019. [Google Scholar]
- Plets, R.; Quinn, R.; Forsythe, W.; Westley, K. Using multibeam echo-sounder data to identify shipwreck sites: Archaeological assessment of the Joint Irish Bathymetric Survey data. Int. J. Naut. Archaeol. 2011, 40, 87–98. [Google Scholar] [CrossRef]
- Shih, P.T.-Y.; Chen, Y.-H.; Chen, J.C. Historic shipwreck study in Dongsha Atoll with bathymetric LiDAR. Archaeol. Prospect. 2013, 21. [Google Scholar] [CrossRef]
- Ye, X.; Li, C.; Zhang, S.; Yang, P.; Li, X. Research on side-scan sonar image target classification method based on transfer learning. In Proceedings of the OCEANS MTS/IEEE, Charleston, SC, USA, 22–25 October 2018. [Google Scholar]
- Xu, L.; Wang, X.; Wang, X. Shipwrecks detection based on deep generation network and transfer learning with small amount of sonar images. In Proceedings of the IEEE 8th Data Driven Control and Learning Systems Conference, Dali, China, 24–27 May 2019. [Google Scholar]
- Davis, D.S.; Buffa, D.C.; Wrobleski, A.C. Assessing the utility of open-access bathymetric data for shipwreck detection in the United States. Heritage 2020, 3, 22. [Google Scholar] [CrossRef]
- GitHub. Repository for Microsoft’s Visual Object Tagging Tool. Available online: https://github.com/microsoft/VoTT (accessed on 30 March 2021).
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767v1. [Google Scholar]
- GitHub. Repository for YOLOv3, Qqwweee. Available online: https://github.com/qqwweee/keras-yolo3 (accessed on 30 March 2021).
- GitHub. Repository for YOLOv3, Anton Mu. Available online: https://github.com/AntonMu/TrainYourOwnYOLO (accessed on 30 March 2021).
- ImageNet1000. 2015. Available online: http://image-net.org/challenges/LSVRC/2015/index (accessed on 30 March 2021).
- Brownlee, J. How to use ROC Curves and Precision-Recall Curves for Classification in Python. Available online: https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/ (accessed on 30 March 2021).
- Accuracy Trap! Pay Attention to Recall, Precision, F-score, AUC. Available online: https://medium.com/datadriveninvestor/accuracy-trap-pay-attention-to-recall-precision-f-score-auc-d02f28d3299c (accessed on 30 March 2021).
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Toward Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouet, V.; Harley, G.L.; Domínguez-Delmás, M. Shipwreck Rates Reveal Caribbean Tropical Cyclone Response to Past Radiative Forcing. Proc. Natl. Acad. Sci. USA 2016, 113, 3169–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accuracy Metric | Formula | Score |
---|---|---|
AUC-ROC | - | 0.945 |
AUC-Precision-Recall | - | 0.901 |
Accuracy | (TP/TN)/(TP+TN+FP+FN) | 0.937 |
Recall | TP/(TP+FN) | 0.946 |
Precision | TP/(TP+FP) | 0.897 |
F1 | (2⋅Recall⋅Precision)/(Recall+Precision) | 0.921 |
Parameter | F Ratio | p-Value |
---|---|---|
Max Slope | 71.323 | 1.24 × 10−15 |
Max Curvature | 32.743 | 2.5 × 10−8 |
Max Curvature-Profile | 3.872 | 4.554 × 10−6 |
Max Curvature-Planar | 29.559 | 1.11 × 10−7 |
Water Clarity | Wreck Count |
---|---|
Transparent | 6 |
Translucent | 5 |
Opaque | 149 |
Above water | 3 |
State | Wreck Count |
---|---|
CT/NY | 90 |
WA | 50 |
FL | 10 |
RI | 6 |
MA | 5 |
PR | 1 |
DE | 1 |
Total | 163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Character, L.; Ortiz JR, A.; Beach, T.; Luzzadder-Beach, S. Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar. Remote Sens. 2021, 13, 1759. https://doi.org/10.3390/rs13091759
Character L, Ortiz JR A, Beach T, Luzzadder-Beach S. Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar. Remote Sensing. 2021; 13(9):1759. https://doi.org/10.3390/rs13091759
Chicago/Turabian StyleCharacter, Leila, Agustin Ortiz JR, Tim Beach, and Sheryl Luzzadder-Beach. 2021. "Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar" Remote Sensing 13, no. 9: 1759. https://doi.org/10.3390/rs13091759
APA StyleCharacter, L., Ortiz JR, A., Beach, T., & Luzzadder-Beach, S. (2021). Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar. Remote Sensing, 13(9), 1759. https://doi.org/10.3390/rs13091759