Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks
Abstract
:1. Introduction
- We present a deep learning based models for sea ice classification based on SAR imagery. One of the major attractions of these models is their capability to model sea ice and water distinctively in SAR images representing different geographic locations and timing.
- We extensively evaluate the models on our collected dataset and compare it to both a baseline method and a reference method. Our results show that our explored model outperforms these methods.
- We categorize state-of-the-art methods and present a comprehensive literature review in this area in the next section.
2. Related Work
3. Method
3.1. CNN Models for Classification
3.2. Modified CNN Model for Classification
4. Experimental Results
4.1. Dataset
4.2. Model Accuracies
4.2.1. Patch Channels and Sizes
4.2.2. Different Training Strategies
4.3. Inference Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
LSTM | Long short term memory |
DNNs | Deep neural networks |
FCN | Fully convolutional networks |
PCA | Principal component analysis |
S1 | Sentinel-1 |
HH | Horizontal-horizontal polarization |
RLU | Rectified linear unit |
ResNet | Residual convolutional neural network |
DL | Deep learning |
CNN | Convolutional neural network |
SVM | Support vector machine |
GLCM | Gray-level co-occurrence matrix |
EO | Earth observation |
HV | Horizontal-vertical polarization |
ESA | European Space Agency |
References
- Bobylev, L.P.; Miles, M.W. Sea Ice in the Arctic Paleoenvironments. In Sea Ice in the Arctic; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–56. [Google Scholar]
- Serreze, M.; Barrett, A.; Stroeve, J.; Kindig, D.; Holland, M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Clim. Chang. 2015, 5, 246. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S.; Lewis, E.O.; Raney, R.K.; Rossiter, J.R. Remote Sensing of Sea Ice and Icebergs; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume 13. [Google Scholar]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Hong, Z.; Zhang, Y.; Yang, S.; Wang, J. Sea Ice Image Classification Based on Heterogeneous Data Fusion and Deep Learning. Remote Sens. 2021, 13, 592. [Google Scholar] [CrossRef]
- Song, W.; Li, M.; Gao, W.; Huang, D.; Ma, Z.; Liotta, A.; Perra, C. Automatic Sea-Ice Classification of SAR Images Based on Spatial and Temporal Features Learning. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Awange, J.L.; Kiema, J.B.K. Microwave remote sensing. In Environmental Geoinformatics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 133–144. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Yan, X.; Cui, B.; Xu, Y.; Shi, P.; Wang, Z. A method of information protection for collaborative deep learning under gan model attack. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustaqeem; Kwon, S. A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 2020, 20, 183. [Google Scholar]
- Liu, J.; Scott, K.A.; Gawish, A.; Fieguth, P. Automatic detection of the ice edge in SAR imagery using curvelet transform and active contour. Remote Sens. 2016, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Lindell, D.B.; Long, D.G. Multiyear Arctic sea ice classification using OSCAT and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2015, 54, 167–175. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Zhang, X.; Meng, J.; Ke, C. Sea ice classification using Cryosat-2 altimeter data by optimal classifier–feature assembly. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1948–1952. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Sea ice classification based on neural networks method using Sentinel-1 data. Int. Multidiscip. Sci. GeoConf. SGEM 2019, 19, 617–623. [Google Scholar]
- Zakhvatkina, N.Y.; Demchev, D.; Sandven, S.; Volkov, V.A.; Komarov, A.S. SAR Sea Ice Type Classification and Drift Retrieval in the Arctic. In Sea Ice in the Arctic; Springer: Berlin/Heidelberg, Germany, 2020; pp. 247–299. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Eppler, D.T.; Farmer, L.D.; Lohanick, A.W.; Hoover, M. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery. J. Geophys. Res. Ocean. 1986, 91, 10661–10695. [Google Scholar] [CrossRef]
- Moen, M.A.; Doulgeris, A.P.; Anfinsen, S.N.; Renner, A.H.; Hughes, N.; Gerland, S.; Eltoft, T. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts. Cryosphere 2013, 7, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Fors, A.S.; Brekke, C.; Doulgeris, A.P.; Eltoft, T.; Renner, A.H.; Gerland, S. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band. Cryosphere 2016, 10, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, T.; Zhang, X.; Zhang, J.; Ren, P. Locality preserving fusion of multi-source images for sea-ice classification. Acta Oceanol. Sin. 2019, 38, 129–136. [Google Scholar] [CrossRef]
- Cristea, A.; van Houtte, J.; Doulgeris, A.P. Integrating incidence angle dependencies into the clustering-based segmentation of SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2925–2939. [Google Scholar] [CrossRef]
- Orlando, J.R.; Mann, R.; Haykin, S. Classification of sea-ice images using a dual-polarized radar. IEEE J. Ocean. Eng. 1990, 15, 228–237. [Google Scholar] [CrossRef]
- Alhumaidi, S.M.; Jones, L.; Park, J.D.; Ferguson, S.M. A neural network algorithm for sea ice edge classification. IEEE Trans. Geosci. Remote Sens. 1997, 35, 817–826. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Sandven, S.; Johannessen, O.M.; Alexandrov, V.Y.; Bobylev, L.P. Multisensor approach to automated classification of sea ice image data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1648–1664. [Google Scholar] [CrossRef] [Green Version]
- Leigh, S.; Wang, Z.; Clausi, D.A. Automated ice–water classification using dual polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5529–5539. [Google Scholar] [CrossRef]
- Li, Y.; Gao, F.; Dong, J.; Wang, S. A Novel Sea Ice Classification Method from Hyperspectral Image Based on Bagging PCA Hashing. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–4. [Google Scholar]
- Park, J.W.; Korosov, A.A.; Babiker, M.; Won, J.S.; Hansen, M.W.; Kim, H.C. Classification of Sea Ice Types in Sentinel-1 SAR images. Cryosphere Discuss. 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhu, T.; Spreen, G.; Melsheimer, C.; Zhang, S.; Li, F. Sea ice-water classification on dual-polarized Sentinel-1 imagery during melting season. In Proceedings of the 21st EGU General Assembly, EGU2019, Vienna, Austria, 7–12 April 2019; Volume 21. [Google Scholar]
- Nogueira, K.; Miranda, W.O.; Dos Santos, J.A. Improving spatial feature representation from aerial scenes by using convolutional networks. In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015; pp. 289–296. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Wang, L.; Wong, A.; Scott, K.A.; Clausi, D.A.; Xu, L.; Shafiee, M.J.; Li, F. Sea ice concentration estimation from satellite SAR imagery using convolutional neural network and stochastic fully connected conditional random field. In Proceedings of the CVPR 2015 Earthvision Workshop, Boston, MA, USA, 11–12 June 2015. [Google Scholar]
- Wang, L.; Scott, K.A.; Xu, L.; Clausi, D.A. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4524–4533. [Google Scholar] [CrossRef]
- Wang, L.; Scott, K.; Clausi, D. Sea ice concentration estimation during freeze-up from SAR imagery using a convolutional neural network. Remote Sens. 2017, 9, 408. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Nogueira, K.; Penatti, O.A.; dos Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural networks. arXiv 2015, arXiv:1508.00092. [Google Scholar]
- Kruk, R.; Fuller, M.C.; Komarov, A.S.; Isleifson, D.; Jeffrey, I. Proof of Concept for Sea Ice Stage of Development Classification Using Deep Learning. Remote Sens. 2020, 12, 2486. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Han, Y.; Gao, Y.; Zhang, Y.; Wang, J.; Yang, S. Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning. Remote Sens. 2019, 11, 2170. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Gao, F.; Dong, J.; Wang, S. Transferred deep learning for sea ice change detection from synthetic-aperture radar images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1655–1659. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Tian, Y. Prediction of Sea Ice Motion With Convolutional Long Short-Term Memory Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6865–6876. [Google Scholar] [CrossRef]
- Mustaqeem; Sajjad, M.; Kwon, S. Clustering-based speech emotion recognition by incorporating learned features and deep BiLSTM. IEEE Access 2020, 8, 79861–79875. [Google Scholar] [CrossRef]
- WMO Sea-Ice Nomenclature, Volumes I, II and III. 2014. Available online: https://library.wmo.int/doc_num.php?explnum_id=4651 (accessed on 1 March 2021).
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Wang, M.; Lu, S.; Zhu, D.; Lin, J.; Wang, Z. A high-speed and low-complexity architecture for softmax function in deep learning. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 223–226. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA; Available online: http://www.deeplearningbook.org (accessed on 1 March 2021).
- Lohse, J.; Doulgeris, A.P.; Dierking, W. Mapping sea-ice types from Sentinel-1 considering the surface-type dependent effect of incidence angle. Ann. Glaciol. 2020, 1–11. [Google Scholar] [CrossRef]
- Piantanida, R.; Miranda, N.; Hadjduch, G. Thermal Denoising of Products Generated by the S-1 IPF; S-1 Mission Performance Centre. 2017. Available online: https://sentinel.esa.int/documents/247904/2142675/Thermal-Denoising-of-Products-Generated-by-Sentinel-1-IPF (accessed on 1 March 2021).
- Joint WMO-IOC Technical Commission for Oceanography. Marine Meteorology. In SIGRID-3: A Vector Archive Format for Sea Ice Charts: Developed by the International Ice Charting Working Group’s Ad Hoc Format Team for the WMO Global Digital Sea Ice Data Bank Project; WMO & IOC: Geneva, Switzerland, 2004. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hughes, N. ExtremeEarth Polar Use Case Training Data 2020. Available online: https://zenodo.org/record/3695276#.X-ytf2j0mUn (accessed on 1 March 2021).
- Goessling, H.F.; Tietsche, S.; Day, J.J.; Hawkins, E.; Jung, T. Predictability of the Arctic sea ice edge. Geophys. Res. Lett. 2016, 43, 1642–1650. [Google Scholar] [CrossRef] [Green Version]
- Melsheimer, C.; Spreen, G. AMSR2 ASI Sea Ice Concentration Data, Arctic, Version 5.4 (NetCDF) (July 2012–December 2019). 2019. Available online: https://doi.pangaea.de/10.1594/PANGAEA.898399 (accessed on 1 March 2021). [CrossRef]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
Codes | Classes | 32 × 32 |
---|---|---|
02 | Open Water/Leads with Water | 9318 |
01–02 | Brash/Pancake Ice | 159 |
83 | Young Ice (YI) | 202 |
86–89 | Level First-Year Ice (FYI) | 213 |
95 | Old/Deformed Ice | 9137 |
Patch Size | Total | Ice | Sea |
---|---|---|---|
10 × 10 | 22,999 | 12,723 | 10,276 |
20 × 20 | 21,020 | 11,301 | 9719 |
32 × 32 | 19,029 | 9711 | 9318 |
36 × 36 | 18,469 | 9255 | 9214 |
46 × 46 | 17,237 | 8255 | 8982 |
HH | HH, HV | HH, HV, Incidence Angle | |
---|---|---|---|
Validation Accuracy | 88.4% | 98.2% | 98.4% |
10 × 10 | 20 × 20 | 32 × 32 | 36 × 36 | 46 × 46 | |
---|---|---|---|---|---|
Validation Accuracy | 95.54% | 97.49 % | 98.53 % | 98.75 % | 99.09% |
Spatial Resolution (meter) | 400 | 800 | 1280 | 1440 | 1840 |
Training Strategies | Validation Accuracy | Resolution in Pixels | Resolution in Meters |
---|---|---|---|
VGG-16 transfer learning | 97.9 | 32 × 32 | 1280 |
VGG-16 trained from scratch | 99.5% | 32 × 32 | 1280 |
VGG-16 trained from scratch with augmentation | 99.79% | 32 × 32 | 1280 |
VGG-16 Modified + augmentation | 99.89% | 32 × 32 | 1280 |
VGG-16 Modified + augmentation | 99.30% | 20 × 20 | 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaleghian, S.; Ullah, H.; Kræmer, T.; Hughes, N.; Eltoft, T.; Marinoni, A. Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks. Remote Sens. 2021, 13, 1734. https://doi.org/10.3390/rs13091734
Khaleghian S, Ullah H, Kræmer T, Hughes N, Eltoft T, Marinoni A. Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks. Remote Sensing. 2021; 13(9):1734. https://doi.org/10.3390/rs13091734
Chicago/Turabian StyleKhaleghian, Salman, Habib Ullah, Thomas Kræmer, Nick Hughes, Torbjørn Eltoft, and Andrea Marinoni. 2021. "Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks" Remote Sensing 13, no. 9: 1734. https://doi.org/10.3390/rs13091734
APA StyleKhaleghian, S., Ullah, H., Kræmer, T., Hughes, N., Eltoft, T., & Marinoni, A. (2021). Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks. Remote Sensing, 13(9), 1734. https://doi.org/10.3390/rs13091734