The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tomoradar Waveforms
2.3. Airborne Lidar Data
2.4. Methods
2.4.1. Simulating Satellite Lidar Waveform
2.4.2. Processing of Tomoradar Waveform
2.4.3. Assessing Penetration
3. Results
3.1. The Correlation Analysis of Tomoradar Waveforms and Satellite Lidar Waveforms
3.2. The Penetration Analysis Based on the Height and Energy Percentiles
3.2.1. Height Percentile Analysis
3.2.2. Energy Percentile Analysis
4. Discussions
4.1. Regression Analysis on the Differences of the Height Percentiles
4.2. Regression Analysis on the Differences of the Energy Percentiles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenqvist, A.; Milne, A.; Lucas, R.; Imhoff, M.; Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 2003, 6, 441–455. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem char-acterisation. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Koetz, B.; Morsdorf, F.; Sun, G.; Ranson, K.J.; Itten, K.; Allgower, B. Inversion of a lidar waveform model for forest bio-physical parameter estimation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 49–53. [Google Scholar] [CrossRef]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Sheng, Y.; Gong, P.; Biging, G.S. Model-Based Conifer canopy Surface Reconstruction form Photographic Imagery: Overcoming the Occlusion, Foreshortening, and Edge Effects. Photogramm. Eng. Remote Sens. 2003, 69, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Dickinson, M.B. Extracting forest canopy structure from spatial information of high resolution optical imagery: Tree crown size versus leaf area index. Int. J. Remote Sens. 2008, 29, 5605–5622. [Google Scholar] [CrossRef]
- Duncanson, L.; Niemann, K.; Wulder, M. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ. 2010, 114, 138–154. [Google Scholar] [CrossRef]
- Fieber, K.D.; Davenport, I.J.; Tanase, M.A.; Ferryman, J.M.; Gurney, R.J.; Becerra, V.; Walker, J.P.; Hacker, J.M. Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment. ISPRS J. Photogramm. Remote Sens. 2015, 104, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Harkel, J.T.; Bartholomeus, H.; Kooistra, L. Biomass and Crop Height Estimation of Different Crops Using UAV-Based Lidar. Remote Sens. 2019, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Kumar, S.; Joshi, S.K.; Govil, H. Spaceborne PolSAR Tomography for Forest Height Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5175–5185. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ. 2002, 81, 19–35. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, Y.; Hyyppa, J.; Hakala, T.; Zhou, H.; Wang, Y.; Karjalainen, M. Estimating Ground Level and Canopy Top Elevation With Airborne Microwave Profiling Radar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2283–2294. [Google Scholar] [CrossRef]
- Chen, Y.; Hakala, T.; Karjalainen, M.; Feng, Z.; Tang, J.; Litkey, P.; Kukko, A.; Jaakkola, A.; Hyyppä, J. UAV-borne profiling radar for forest research. Remote Sens. 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Chen, Y.; Hyyppa, J.; Feng, Z.; Li, F.; Hakala, T.; Xu, X.; Zhu, X. Estimation of Canopy Height Using an Airborne Ku-Band Frequency-Modulated Continuous Waveform Profiling Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3590–3597. [Google Scholar] [CrossRef]
- Du, K.; Huang, H.; Feng, Z.; Hakala, T.; Chen, Y.; Hyyppä, J. Using Microwave Profile Radar to Estimate Forest Canopy Leaf Area Index: Linking 3D Radiative Transfer Model and Forest Gap Model. Remote Sens. 2021, 13, 297. [Google Scholar] [CrossRef]
- Weishampel, J.F.; Ranson, K.J.; Harding, D.J. Remote sensing of forest canopies. Selbyana 1996, 6–14. [Google Scholar]
- Chasmer, L.; Hopkinson, C.; Treitz, P. Investigating laser pulse penetration through a conifer canopy by integrating air-borne and terrestrial lidar. Can. J. Remote Sens. 2006, 32, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Massaro, R.; Zinnert, J.; Anderson, J.; Edwards, J.; Crawford, E.; Young, D. Lidar flecks: Modeling the influence of canopy type on tactical foliage penetration by airborne, active sensor platforms. SPIE Def. Secur. Sens. 2012, 8360, 836008. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Z.; Li, F.; Zhou, H.; Hakala, T.; Karjalainen, M.; Hyyppä, J. Lidar-aided analysis of boreal forest backscatter at Ku band. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102133. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Hu, N.; Dong, Y.; Xu, X.; Feng, Z.; Hakala, T.; Hyyppä, J. The Determination of Effective Beamwidth of Ku Band Profiling Radar Based on Waveform Matching Method in the Boreal Forest of Finland. Remote Sens. 2020, 12, 2710. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 924–934. [Google Scholar] [CrossRef]
Symbol | 15th | 30th | 45th | 60th | 75th | 90th |
---|---|---|---|---|---|---|
1 (m) | 12.92 | 9.71 | 6.61 | 3.75 | 1.40 | −0.30 |
1 (m) | 15.65 | 12.73 | 9.54 | 6.17 | 2.85 | 0.35 |
1 (m) | 7.37 | 7.18 | 6.56 | 5.31 | 3.33 | 1.35 |
1 (m) | 7.34 | 7.32 | 7.17 | 6.33 | 4.45 | 1.81 |
2 (%) | 91.51 | 88.31 | 85.49 | 85.55 | 89.42 | 94.81 |
Symbol | One-Sixth | Two-Sixths | Three-Sixths | Four-Sixths | Five-Sixths | Six-Sixths |
---|---|---|---|---|---|---|
0.06 | 0.17 | 0.14 | 0.12 | 0.17 | 0.34 | |
0.13 | 0.21 | 0.14 | 0.12 | 0.16 | 0.24 | |
0.08 | 0.13 | 0.10 | 0.13 | 0.15 | 0.26 | |
0.09 | 0.13 | 0.10 | 0.13 | 0.16 | 0.21 | |
(%) | 91.13 | 76.19 | 55.52 | 48.32 | 40.76 | 12.46 |
Symbol | Fitting Model | ||
---|---|---|---|
0.96 | 0.75 | ||
0.97 | 0.78 | ||
0.96 | 0.95 | ||
0.98 | 0.56 | ||
0.97 | 0.50 | ||
0.97 | 0.20 |
Symbol | Fitting Model | ||
---|---|---|---|
0.95 | 0.01 | ||
0.94 | 0.02 | ||
0.89 | 0.03 | ||
0.95 | 0.01 | ||
0.95 | 0.02 | ||
0.94 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Chen, Y.; Hakala, T.; Feng, Z.; Jiang, C.; Jia, J.; Sun, H.; Hyyppä, J. The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest. Remote Sens. 2021, 13, 1650. https://doi.org/10.3390/rs13091650
Zhou H, Chen Y, Hakala T, Feng Z, Jiang C, Jia J, Sun H, Hyyppä J. The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest. Remote Sensing. 2021; 13(9):1650. https://doi.org/10.3390/rs13091650
Chicago/Turabian StyleZhou, Hui, Yuwei Chen, Teemu Hakala, Ziyi Feng, Changhui Jiang, Jianxin Jia, Haibin Sun, and Juha Hyyppä. 2021. "The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest" Remote Sensing 13, no. 9: 1650. https://doi.org/10.3390/rs13091650
APA StyleZhou, H., Chen, Y., Hakala, T., Feng, Z., Jiang, C., Jia, J., Sun, H., & Hyyppä, J. (2021). The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest. Remote Sensing, 13(9), 1650. https://doi.org/10.3390/rs13091650