Detecting Archaeological Features with Airborne Laser Scanning in the Alpine Tundra of Sápmi, Northern Finland
Abstract
:1. Introduction
2. Archaeological and Remote Sensing Materials and Methods
2.1. Archaeological Material and the Ropijärvenperä Production Area
2.2. Characteristics and Visulization of the Ropijärvenperä ALS-5p Data
2.3. Semi-Automated Feature Detection from the ALS-5p Data
2.4. Methods for Assessing Locational Accuracy of Archaeological Features
2.5. Methods for Querying Attributes of Archaeological Features
3. Discussion
3.1. Locating Archaeological Features
3.2. Locational Accuracy of Archaeological Features
3.3. Querying Attributes of Archaeological Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Risbøl, O.; Langhammer, D.; Mauritsen, E.S.; Seitsonen, O. Employment, Utilization, and Development of Airborne Laser Scanning in Fenno-Scandinavian Archaeology–A Review. Remote Sens. 2020, 12, 1411. [Google Scholar] [CrossRef]
- Holopainen, M.; Haapanen, R.; Tuominen, S.; Viitala, R. Performance of Airborne Laser Scanning and Aerial Photograph-Based Statistical and Textural Features in Forest Variable Estimation. In Proceedings of the SilviLaser 2008, 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, Heriot-Watt University, Edinburgh, UK, 17–19 September 2008; Hill, R.A., Rosette, J., Suárez, J., Eds.; Heriot-Watt University: Edinburgh, UK, 2008; pp. 105–112. [Google Scholar]
- Kurri, I.; Haimila, M. Metsää syvemmältä–Lidar-aineisto arkeologian apuvälineenä. Muinaistutkija 2010, 1, 63–67. [Google Scholar]
- Seitsonen, O. Juoksuhautoja ja asumuspainanteita: Kokemuksia Lidar-laserkeilausaineiston käytöstä kenttäarkeologiassa. Muinaistutkija 2011, 2, 36–46. [Google Scholar]
- Koivisto, S.; Laulumaa, V. Pistepilvessä–Metsien arkeologiset kohteet LiDAR-ilmalaserkeilausaineistoissa. Arkeolog 2012, 1, 51–67. [Google Scholar]
- Laser Scanning Data 2008–2019. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/laser-scanning-data (accessed on 17 July 2020).
- Seitsonen, O. LiDAR-kaukokartoitusaineistojen visualisointi ja analysointi: Paikkatietoalgoritmeja arkeologeille. Muinaistutkija 2013, 1, 2–16. [Google Scholar]
- Mustonen, R. Conquering the Forests with Lasers and Social Media—Finland’s National Forest Programme 2015 Cultural Heritage Survey. In Archaeological Sites in Forests: Strategies for their Protection; Irlinger, W., Suhr, G., Eds.; Volk: Munich, Germany, 2017; Volume 14, pp. 19–24. [Google Scholar]
- Sillanpää, E.; Rikkinen, A. Projekti Sturmbock. Loppuraportti; Survey Report; Project Sturmbock: Enontekiö, Finland, 2019. [Google Scholar]
- Ikäheimo, J. ”Vain muutaman pikselin tähden”: Varhaismetallikauden Pienipiirteiset Muinaisjäännökset Ilmalaserkeilausaineistoissa; Presentation at the National Museum of Finland, 4 February 2021. Available online: https://www.museovirasto.fi/fi/kulttuuriymparisto/kulttuuriymparistopalvelut-tehtavat-ja-yhteistyo/kulttuuriymparistopalveluiden-tilaisuudet-ja-tapahtumat/arkeologisten-kenttaetoiden-esittelypaivat (accessed on 10 February 2021).
- Seitsonen, O.; Moshenska, G. Who Owns the ‘Wilderness’? Indigenous Second World War Landscapes in Sápmi, Finnish Lapland. In Conflict Landscapes: Materiality and Meaning in Contested Places; Saunders, N.J., Cornish, P., Eds.; Routledge: Abingdon, UK, 2021. [Google Scholar]
- Stichelbaut, B.; Thomas, S.; Seitsonen, O.; Gheyle, W.; De Mulder, G.; Hemminki, V.; Plets, G. Operation Northern Light: Remote Sensing of a Second World War Conflict Landscape in Northern Finland. In Conflict Landscapes: Materiality and Meaning in Contested Places; Saunders, N.J., Cornish, P., Eds.; Routledge: Abingdon, UK, 2021. [Google Scholar]
- Mikkonen, K. Parakkeja ja Piikkilankaa; Lapin maakuntamuseo: Rovaniemi, Finland, 2016. [Google Scholar]
- Forgotten Fronts. Tutkimuksia Suomen Unohdetuilta Taistelukentiltä. Available online: https://www.forgottenfronts.fi/ (accessed on 7 January 2021).
- Hamari, P. Arkeologisten Kohteiden Automaattinen Tunnistaminen Laserkeilausdatasta–LIDARK; Research Plan; Museovirasto: Helsinki, Finland, 2020. [Google Scholar]
- Ikäheimo, J.; Seitsonen, O. Laserkeilausaineisto 5p arkeologisten kuoppajäännösten tutkimuksessa. Muinaistutkija. under review.
- MML 43562/05 00 00/2020. Ropijärvenperä. Use License and Metadata (Partly Confidential) to the Airborne Laser Scanning Data from the Ropijärvenperä Production Area. In Includes Finnish National Land Survey Laser Scanning 5p Data from the Year 2020; Finnish National Land Survey: Helsinki, Finland, 2020.
- Näin Hankit Laserkeilausaineistoja. Available online: https://www.maanmittauslaitos.fi/laserkeilausaineistot (accessed on 1 January 2021).
- Viljanmaa, S. Lätäsenon-Hietajoen Soidensuojelualue; Survey Report; Metsähallitus, Lapin Luontopalvelut: Rovaniemi, Finland, 2014. [Google Scholar]
- NLS Orthophotos. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/orthophotos (accessed on 16 October 2020).
- Seitsonen, O. Archaeologies of Hitler’s Arctic War. Heritage of the Second World War German Military Presence in Finnish Lapland; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Thuestad, A.E.; Risbøl, O.; Kleppe, J.I.; Barlindhaug, S.; Myrvoll, E.R. Archaeological Surveying of Subarctic and Arctic Landscapes: Comparing the Performance of Airborne Laser Scanning and Remote Sensing Image Data. Sustainability 2021, 13, 1917. [Google Scholar] [CrossRef]
- Rapidlasso GmbH. Available online: https://rapidlasso.com/ (accessed on 10 February 2021).
- De Matos-Machado, R.; Toumazet, J.-P.; Bergès, J.-C.; Amat, J.-P.; Arnaud-Fassetta, G.; Bétard, F.; Bilodeau, C.; Hupy, J.P.; Jacquemot, S. War Landform Mapping and Classification on the Verdun Battlefield (France) Using Airborne LiDAR and Multivariate Analysis. Earth Surf. Process. Landf. 2019, 44, 1430–1448. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Kokalj, Ž.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef] [Green Version]
- Hesse, R. LiDAR-Derived Local Relief Models–a New Tool for Archaeological Prospection. Archaeol. Prospect. 2010, 17, 67–72. [Google Scholar] [CrossRef]
- Devereux, B.J.; Amable, G.S.; Crow, P. Visualisation of LiDAR Terrain Models for Archaeological Feature Detection. Antiquity 2008, 82, 470–479. [Google Scholar] [CrossRef]
- Garcia-Molsosa, A.; Orengo, H.A.; Lawrence, D.; Philip, G.; Hopper, K.; Petrie, C.A. Potential of Deep Learning Segmentation for the Extraction of Archaeological Features from Historical Map Series. Archaeol. Prospect. 2021, 1–13. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Lecture Notes in Computer Science 9351; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Picterra. Available online: https://picterra.ch/ (accessed on 7 January 2021).
- Gallwey, J.; Eyre, M.; Tonkins, M.; Coggan, J. Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage Through Deep Transfer Learning. Remote Sens. 2019, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Lambers, K.; Verschoof-van der Vaart, W.B.; Bourgeois, Q.P.J. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using Deep Neural Networks on Airborne Laser Scanning Data: Results from a Case Study of Semi-Automatic Mapping of Archaeological Topography on Arran, Scotland. Archeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Verschoof-van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Trier, Ø.D.; Rekstena, J.H.; Løseth, K. Automated Mapping of Cultural Heritage in Norway from Airborne Lidar Data Using Faster R-CNN. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102241. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Fenger-Nielsen, R.; Hollesen, J.; Matthiesen, H.; Andersen, E.A.S.; Westergaard-Nielsen, A.; Harmsen, H.; Michelsen, A.; Elberling, B. Footprints from the Past: The Influence of Past Human Activities on Vegetation and Soil Across Five Archaeological Sites in Greenland. Sci. Total Environ. 2019, 654, 895–905. [Google Scholar] [CrossRef]
- Karlsson, N. Bosättning och Resursutnyttjande. Miljöarkeologiska Studier av Boplatser Med Härder Inom Perioden 600–1900 e. Kr Inom Skogssamiskt Område. Studia Archaeologica Universitatis Umensis 21; Umeå Universitet: Umeå, Sweden, 2006. [Google Scholar]
- Seitsonen, O.; Viljanmaa, S. Landscapes of Sámi Reindeer Domestication and Pastoralism in the Gilbbesjávri Region, Sápmi, Northernmost Europe ca. 700–1800 A.D. J. Field Archaeol. 2021, 46, 172–191. [Google Scholar] [CrossRef]
- Seitsonen, O.; Égüez, N. Here be Reindeer: Geoarchaeological Approaches to the Transspecies Lifeworlds of the Sámi Reindeer Herder Camps on the Tundra. Iskos 24. under review.
- 295/1963 English. Antiquities Act. Muinaismuistolaki. Lag om Fornminnen. Available online: https://www.finlex.fi/en/laki/kaannokset/1963/en19630295 (accessed on 1 April 2018).
- MacGyver. 3D Rinnevarjokartta. Available online: https://www.aarremaanalla.com/foorumi/viewtopic.php?f=10&t=23689 (accessed on 24 December 2020).
- Ilppari Reporting Service. Available online: https://www.kyppi.fi/palveluikkuna/ilmoitus/edit/asp/enk_default.aspx (accessed on 1 March 2021).
- Seitsonen, O. Crowdsourcing Cultural Heritage: Public Participation and Conflict Legacy in Finland. J. Community Archaeol. Herit. 2017, 4, 115–130. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Hyvönen, E.; Ikkala, E.; Tuominen, J.; Thomas, S.; Wessman, A.; Rohiola, V. FindSampo Platform for Reporting and Studying Archaeological Finds Using Citizen Science. In Workshop on Humanities in the Semantic Web; Adamou, A., Enrico Daga, E., Meroño-Peñuela, A., Eds.; CEUR-WS.org: Heraklion, Greece, 2020; pp. 33–40. Available online: http://ceur-ws.org/Vol-2695/paper4.pdf (accessed on 20 June 2020).
Case Study Area | Area (km2) | ALS-5p Tiles | Orthophotos | |
---|---|---|---|---|
1 | Eanodat Njamatjávri | 1.5 | W3332H2_6, W3341G1_4 | W3332H, W3341G |
2 | Eanodat Bienne Biera Mohkki | 2 | W3334F4_3, W3334F4_6 | W3334F |
3 | Eanodat Hirvasvuohppi | 6 | W3334H4_5-9, W4112B2_1 | W3334H, W4112B |
4 | Eanodat Mohkkeguoika | 3 | W3333H4_1-3 | W3333H |
5 | Eanodat Gálggobuolžžat | 2 | W3333E4_6, W3333E4_9 | W3333E |
6 | Eanodat Ádjajohka | 3 | V34444B4_9, V34444D2_3, W3333A3_7, W3333C1_1 | V3444B, V3444D, W3333A, W3333C |
7 | Eanodat Cáicečuolbma | 2 | W3333E3_1-2 | W3333E |
8 | Eanodat Cáicegorsa | 1.5 | V3444H2_3, W3333G1_1 | V3444H, W3333G |
Total area (km2) | 21 |
Site Type | FHA | PS |
---|---|---|
Stone Age habitation sites | 2 | |
Sámi hearth (SáN. árran) | 4 | |
Iron Age find location | 1 | |
Historical habitation site | 1 | |
Historical building foundations | 22 | |
Trapping pit system | 6 | |
Individual pitfall traps | 422 | |
Second World War features | 4 | 1983 |
Total | 462 | 1983 |
Purpose of Scan | Terrain Modelling/Environmental |
---|---|
Time of data acquisition | 17 and 19 June 2020 |
Point density (pts/m2) | 5.1 |
Strip overlap | 20% |
Scanner type | Riegl VQ-1560II S/N2224041/RiACQUIRE |
Scan angle | 20° |
Aircraft | Cessna 208B Grand Caravan |
Flying height above ground | 2100 m |
Speed of aircraft (KTAS) | 140 knots |
Laser pulse frequency | 1,338,000 Hz |
Scan frequency | 230 Hz |
Multipulse | Yes |
Maximum point interval in direction of flight | 0.4 m |
Maximum point interval in direction of mirror | 0.4 m |
Processing software | TerraPOS 2.5.2 |
GNSS solution | Precise Point Positioning |
Horizontal position error average (RMS) | 0.039 m |
Vertical position error average (RMS) | 0.062 m |
Horizontal position error max (RMS) | 0.049 m |
Vertical position error max (RMS) | 0.071 m |
Previously Registered (FHA+PS) | New from ALS-5p (LIDARK) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Case Study Area | Other Sites | Pit Features | Total | Pit Features | New/km2 | Grand Total | Visible in Orthophoto | Detected by D1-3 | |
1 | Eanodat Njamatjávri | 1 | 4 | 5 | 16 | 11 | 21 | 48% | 95% |
2 | Eanodat Bienne Biera Mohkki | - | - | - | 24 | 12 | 24 | 4% | 96% |
3 | Eanodat Hirvasvuohppi | 2 | 304 | 306 | 175 | 29 | 481 | 9% | 98% |
4 | Eanodat Mohkkeguoika | 1 | 167 | 168 | 224 | 75 | 392 | 8% | 99% |
5 | Eanodat Gálggobuolžžat | - | 176 | 176 | 308 | 154 | 484 | 34% | 94% |
6 | Eanodat Ádjajohka | 1 | 120 | 121 | 58 | 19 | 179 | 6% | 97% |
7 | Eanodat Cáicečuolbma | - | 181 | 181 | 232 | 116 | 413 | 13% | 97% |
8 | Eanodat Cáicegorsa | - | 40 | 40 | 33 | 22 | 73 | 21% | 96% |
Total | 5 | 992 | 997 | 1070/21 km2 | 51/km2 | 2067 | 16% | 98% |
Method * | N | Avg | Median | SD | Min | Max |
---|---|---|---|---|---|---|
ArcMap | 160 | 0.33 | 0.31 | 0.19 | 0.04 | 1.05 |
U-Net | 170 | 0.57 | 0.49 | 0.33 | 0.01 | 1.85 |
GNSS | 156 | 2.79 | 2.7 | 1.19 | 0.31 | 5.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seitsonen, O.; Ikäheimo, J. Detecting Archaeological Features with Airborne Laser Scanning in the Alpine Tundra of Sápmi, Northern Finland. Remote Sens. 2021, 13, 1599. https://doi.org/10.3390/rs13081599
Seitsonen O, Ikäheimo J. Detecting Archaeological Features with Airborne Laser Scanning in the Alpine Tundra of Sápmi, Northern Finland. Remote Sensing. 2021; 13(8):1599. https://doi.org/10.3390/rs13081599
Chicago/Turabian StyleSeitsonen, Oula, and Janne Ikäheimo. 2021. "Detecting Archaeological Features with Airborne Laser Scanning in the Alpine Tundra of Sápmi, Northern Finland" Remote Sensing 13, no. 8: 1599. https://doi.org/10.3390/rs13081599
APA StyleSeitsonen, O., & Ikäheimo, J. (2021). Detecting Archaeological Features with Airborne Laser Scanning in the Alpine Tundra of Sápmi, Northern Finland. Remote Sensing, 13(8), 1599. https://doi.org/10.3390/rs13081599