Multistage Evolution in Transverse Aeolian Ridges
Abstract
:1. Introduction
1.1. Transverse Aeolian Ridges
1.2. Aeolian Processes
1.3. Multi-Stage TAR Formation and This Study
2. Materials and Methods
- Identify impact craters.
- Delineate any overlap with TAR crests.
- Determine whether TAR crests predate or postdate the impact.
- Determine whether there was subsequent modification of the crater by different aeolian features.
3. Results
3.1. Cratering Superposition
3.2. Ridge Morphologies
4. Discussion
4.1. Uncertainty in Determining Crater Superposition
4.2. The Timing between Generations of Ridges
4.3. TAR Analogs and Implications
4.4. How Did TARs Form?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Examined Images
HiRISE Observation | Cratering in Superposition Observed |
ESP_013071_1365 | No |
ESP_015894_1545 | Yes |
ESP_017661_1545 | Yes |
ESP_018186_1865 | No |
ESP_021688_1325 | No |
ESP_023817_1800 | No |
ESP_025622_1385 | No |
ESP_027687_2650 | No |
ESP_027708_1815 | Yes |
ESP_028297_1380 | No |
ESP_033460_1725 | No |
ESP_035514_2610 | No |
ESP_040559_1845 | No |
ESP_046465_2165 | No |
ESP_052179_2215 | No |
ESP_053339_1575 | No |
ESP_054690_1670 | No |
ESP_055374_1510 | Yes |
ESP_056216_2185 | No |
ESP_056777_0925 | No |
ESP_058373_1355 | No |
ESP_062483_1755 | No |
ESP_064851_1675 | No |
ESP_064877_1670 | Yes |
ESP_065169_2085 | Yes |
ESP_065223_1855 | Yes |
ESP_065260_1715 | Yes |
ESP_065853_1190 | No |
PSP_010448_1530 | Yes |
ESP_013071_1365 | No |
References
- Wilson, S.A.; Zimbelman, J.R. Latitude-Dependent Nature and Physical Characteristics of Transverse Aeolian Ridges on Mars. J. Geophys. Res. E Planets 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Balme, M.; Berman, D.C.; Bourke, M.C.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology 2008, 101, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.C.; Balme, M.R.; Rafkin, S.C.R.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, Orientations, and Ages. Icarus 2011, 213, 116–130. [Google Scholar] [CrossRef]
- Chojnacki, M.; Hargitai, H.; Kereszturi, Á. Encyclopedia of Planetary Landforms. Encycl. Planet. Landf. 2015, 1–6. [Google Scholar] [CrossRef]
- Geissler, P.E.; Wilgus, J.T. The Morphology of Transverse Aeolian Ridges on Mars. Aeolian Res. 2017, 26, 63–71. [Google Scholar] [CrossRef]
- Geissler, P.E. The Birth and Death of Transverse Aeolian Ridges on Mars. J. Geophys. Res. Planets 2014, 2583–2599. [Google Scholar] [CrossRef]
- Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; Mcewen, A.S.; et al. Planet-Wide Sand Motion on Mars. Geology 2012, 40, 31–34. [Google Scholar] [CrossRef]
- Silvestro, S.; Chojnacki, M.; Vaz, D.A.; Cardinale, M.; Yizhaq, H.; Esposito, F. Megaripple Migration on Mars. J. Geophys. Res. Planets 2020. [Google Scholar] [CrossRef]
- Fenton, L.K.; Bandfield, J.L.; Ward, A.W. Aeolian Processes in Proctor Crater on Mars: Sedimentary History as Analyzed from Multiple Data Sets. J. Geophys. Res. Planets 2003, 108, 5129. [Google Scholar] [CrossRef]
- Bridges, N.; Geissler, P.; Silvestro, S.; Banks, M. Bedform Migration on Mars: Current Results and Future Plans. Aeolian Res. 2013, 9, 133–151. [Google Scholar] [CrossRef]
- Berman, D.C.; Balme, M.R.; Michalski, J.R.; Clark, S.C.; Joseph, E.C.S. High-Resolution Investigations of Transverse Aeolian Ridges on Mars. Icarus 2018, 312, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Reiss, D.; van Gasselt, S.; Neukum, G.; Jaumann, R. Absolute Dune Ages and Implications for the Time of Formation of Gullies in Nirgal Vallis, Mars. J. Geophys. Res. E Planets 2004, 109, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Qin, Q.; Ren, H.; Sui, J.; Zhang, Y. Heat and Drought Stress Advanced Global Wheat Harvest Timing from 1981–2014. Remote Sens. 2019, 11, 971. [Google Scholar] [CrossRef] [Green Version]
- Nagle-McNaughton, T.P.; Scuderi, L.A. A Geomorphological Case for Multistage Evolution of Transverse Aeolian Ridges (TARs) in Nirgal Vallis. Planet. Space Sci. 2021, 105192. [Google Scholar] [CrossRef]
- Dong, Z.; Wei, Z.; Qian, G.; Zhang, Z.; Luo, W.; Hu, G. “Raked” Linear Dunes in the Kumtagh Desert, China. Geomorphology 2010, 123, 122–128. [Google Scholar] [CrossRef]
- Lü, P.; Narteau, C.; Dong, Z.; Rozier, O.; Courrech Du Pont, S. Unravelling Raked Linear Dunes to Explain the Coexistence of Bedforms in Complex Dunefields. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimbelman, J.R.; Williams, S.H. Dunes versus Ripples: Topographic Profiling across Terrestrial Examples, with Application to the Interpretation Offeatures on Mars. In AGU 88 Abstract P34A-07; American Geophysical Union: Washington, DC, USA, 2007. [Google Scholar]
- Shockey, K.M.; Zimbelman, J.R. Analysis of Transverse Aeolian Ridge Profiles Derived from HiRISE Images of Mars. Earth Surf. Process. Landf. 2013, 38, 179–182. [Google Scholar] [CrossRef]
- Bourke, M.C.; Balme, M.; Beyer, R.A.; Williams, K.K.; Zimbelman, J. A Comparison of Methods Used to Estimate the Height of Sand Dunes on Mars. Geomorphology 2006, 81, 440–452. [Google Scholar] [CrossRef]
- Wilson, S. Large Aeolian Ripples: Extrapolations from Earth to Mars. In Proceedings of the Lunar and Planetary Science Conference, March, TX, USA, 17–21 March 2003; pp. 1–2. [Google Scholar]
- Williams, S. Large Ripples on Earth and Mars. In Proceedings of the Lunar and Planetary Science Conference, League City, TX, USA, 11–15 March 2002. [Google Scholar]
- Hugenholtz, C.H.; Barchyn, T.E.; Favaro, E.A. Formation of Periodic Bedrock Ridges on Earth. Aeolian Res. 2015, 18, 135–144. [Google Scholar] [CrossRef]
- de Silva, S.L.; Spagnuolo, M.G.; Bridges, N.T.; Zimbelman, J.R. Gravel-Mantled Megaripples of the Argentinean Puna: A Model for Their Origin and Growth with Implications for Mars. Bull. Geol. Soc. Am. 2013, 125, 1912–1929. [Google Scholar] [CrossRef] [Green Version]
- Foroutan, M.; Zimbelman, J.R. Mega-Ripples in Iran: A New Analog for Transverse Aeolian Ridges on Mars. Icarus 2016, 274, 99–105. [Google Scholar] [CrossRef]
- Foroutan, M.; Steinmetz, G.; Zimbelman, J.R.; Duguay, C.R. Megaripples at Wau-an-Namus, Libya: A New Analog for Similar Features on Mars. Icarus 2019, 319, 840–851. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. A Terrestrial Analog for Transverse Aeolian Ridges (TARs): Environment, Morphometry, and Recent Dynamics. Icarus 2017, 289, 239–253. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Scheidt, S.P. Precision Topography of a Reversing Sand Dune at Bruneau Dunes, Idaho, as an Analog for Transverse Aeolian Ridges on Mars. Icarus 2014, 230, 29–37. [Google Scholar] [CrossRef]
- Vriend, N.M.; Jarvis, P.A. Between a Ripple and a Dune. Nat. Phys. 2018, 14, 741–742. [Google Scholar] [CrossRef]
- Sullivan, R.; Bridges, N.; Herkenhoff, K.; Hamilton, V.; Rubin, D. Transverse Aeolian Ridges (TARs) as Megaripples: Rover Encounters at Meridiani Planum, Gusev, and Gale. In Proceedings of the Eighth International Conference on Mars, Pasadena, CA, USA, 14–18 July 2014; Volume 1791, p. 1424. [Google Scholar]
- Zimbelman, J.R. The Transition between Sand Ripples and Megaripples on Mars. Icarus 2019, 333, 127–129. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Boulding, A. Morphology of Transverse Aeolian Ridges (TARs) on Mars from a Large Sample: Further Evidence of a Megaripple Origin? Icarus 2017, 286, 193–201. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Foroutan, M. Dingo Gap: Curiosity Went Up a Small Transverse Aeolian Ridge and Came Down a Megaripple. J. Geophys. Res. Planets 2020. [Google Scholar] [CrossRef]
- Sullivan, R.; Kok, J.F.; Katra, I.; Yizhaq, H. A Broad Continuum of Aeolian Impact Ripple Morphologies on Mars Is Enabled by Low Wind Dynamic Pressures. J. Geophys. Res. Planets 2020, 125, 1–39. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: London, UK, 1941; ISBN 0486141195. [Google Scholar]
- Parsons, A.J.; Abrahams, A.D. Geomorphology of desert environments. In Geomorphology of Desert Environments; Springer: Berlin/Heidelberg, Germany, 1994; pp. 3–12. [Google Scholar]
- Middleton, G.V.; Southard, J.B. Mechanics of Sediment Transport. In Society for Economic Paleontology and Mineralogy Short Course; McMaster University: Hamilton, ON, USA, 1984; Volume 3. [Google Scholar]
- Jakel, D. Die Bildung von Barchanen in Faya-Largeau/Rep. Du Tchad. Z. Geomorphol. 1980, 24, 141–159. [Google Scholar]
- Kocurek, G.; Townsley, M.; Yeh, E.; Havholm, K.; Sweet, M.L. Dune and Dune-Field Development on Padre Island, Texas, with Implications for Interdune Deposition and Water-Table-Controlled Accumulation. J. Sediment. Petrol. 1992, 62, 622–635. [Google Scholar] [CrossRef]
- Cooper, W.S. Coastal Sand Dunes of Oregon and Washington; Geological Society of America: Boulder, CO, USA, 1958; Volume 72, ISBN 0813710723. [Google Scholar]
- Werner, B.T. Eolian Dunes: Computer Simulations and Attractor Interpretation. Geology 1995, 23, 1107–1110. [Google Scholar] [CrossRef]
- Wiggs, G.F.S. Desert Dune Dynamics and the Evaluation of Shear Velocity: An Integrated Approach. Geol. Soc. Spec. Publ. 1993, 72, 37–46. [Google Scholar] [CrossRef]
- Burkinshaw, J.R.; Illenberger, W.K.; Rust, I.C. Wind-Speed Profiles over a Reversing Transverse Dune. Geol. Soc. Spec. Publ. 1993, 72, 25–36. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes; Psychology Press: London, UK, 1995; ISBN 0415060931. [Google Scholar]
- Mulligan, K.R. Velocity Profiles Measured on the Windward Slope of a Transverse Dune. Earth Surf. Process. Landf. 1988, 13, 573–582. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Leibovich, S.; Richards, K.J. Turbulent Shear Flows over Low Hills. Q. J. R. Meteorol. Soc. 1988, 114, 1435–1470. [Google Scholar] [CrossRef]
- Jackson, P.S.; Hunt, J.C.R. Turbulent Wind Flow over a Low Hill. Q. J. R. Meteorol. Soc. 1975, 101, 929–955. [Google Scholar] [CrossRef]
- Zeman, O.; Jensen, N.O. Modification of Turbulence Characteristics in Flow over Hills. Q. J. R. Meteorol. Soc. 1987, 113, 55–80. [Google Scholar] [CrossRef]
- Mason, P.J.; Sykes, R.I. Flow over an Isolated Hill of Moderate Slope. Q. J. R. Meteorol. Soc. 1979, 105, 383–395. [Google Scholar] [CrossRef]
- Lancaster, N.; Nickling, W.G.; McKenna Neuman, C.K.; Wyatt, V.E. Sediment Flux and Airflow on the Stoss Slope of a Barchan Dune. Geomorphology 1996, 17, 55–62. [Google Scholar] [CrossRef]
- Lancaster, N. Desert Dune Processes and Dynamics. Arid Zone Geomorphol. Process Form Chang. Drylands 2011, 25, 487–515. [Google Scholar] [CrossRef]
- Parsons, D.R.; Wiggs, G.F.S.; Walker, I.J.; Ferguson, R.I.; Garvey, B.G. Numerical Modelling of Airflow over an Idealised Transverse Dune. Environ. Model. Softw. 2004, 19, 153–162. [Google Scholar] [CrossRef]
- Weng, W.S.; Hunt, J.C.R.; Carruthers, D.J.; Warren, A.; Wiggs, G.F.S.; Livingstone, I.; Castro, I. Air flow and sand transport over sand-dunes. In Aeolian Grain Transport; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–22. [Google Scholar]
- Walker, I.J.; Nickling, W.G. Dynamics of Secondary Airflow and Sediment Transport over and in the Lee of Transverse Dunes. Prog. Phys. Geogr. 2002, 26, 47–75. [Google Scholar] [CrossRef]
- Frank, A.J.; Kocurek, G. Airflow up the Stoss Slope of Sand Dunes: Limitations of Current Understanding. Geomorphology 1996, 17, 47–54. [Google Scholar] [CrossRef]
- Frank, A.; Kocurek, G. Toward a Model for Airflow on the Lee Side of Aeolian Dunes. Sedimentology 1996, 43, 451–458. [Google Scholar] [CrossRef]
- Walker, I.J. Secondary Airflow and Sediment Transport in the Lee of a Reversing Dune. Earth Surf. Process. Landf. 1999, 24, 437–448. [Google Scholar] [CrossRef]
- Reffet, E.; du Pont, S.C.; Hersen, P.; Douady, S. Formation and Stability of Transverse and Longitudinal Sand Dunes. Geology 2010, 38, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Narteau, C.; Rozier, O. Development and Steady States of Transverse Dunes: A Numerical Analysis of Dune Pattern Coarsening and Giant Dunes. J. Geophys. Res. F Earth Surf. 2015, 120, 2200–2219. [Google Scholar] [CrossRef] [Green Version]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Why Do Active and Stabilized Dunes Coexist under the Same Climatic Conditions? Phys. Rev. Lett. 2007, 98, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Tsoar, H. Profiles Analysis of Sand Dunes and Their Steady State Signification. Geogr. Ann. 2007, 67, 47–59. [Google Scholar] [CrossRef]
- Renwick, W.H. Equilibrium, Disequilibrium, and Nonequilibrium Landforms in the Landscape. Geomorphology 1992, 5, 265–276. [Google Scholar] [CrossRef]
- Kocurek, G.A.; Havholm, K.G.; Deynoux, M.; Blakey, R.C. Amalgamated Accumulations Resulting from Climatic and Eustatic Changes, Akchar Erg, Mauritania. Sedimentology 1991, 38, 751–772. [Google Scholar] [CrossRef]
- Lancaster, N.; Kocurek, G.; Singhvi, A.; Pandey, V.; Deynoux, M.; Ghienne, J.F.; Lô, K. Late Pleistocene and Holocene Dune Activity and Wind Regimes in the Western Sahara Desert of Mauritania: Reply. Geology 2003, 31, 991–994. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, N.; Liao, K.; Klenk, P. Geomorphological Evolution Revealed by Aeolian Sedimentary Structure in Badain Jaran Desert on Alxa Plateau, Northwest China. Chin. Geogr. Sci. 2011, 21, 267–278. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Huntley, D.J.; Ollerhead, J. Relict Late Wisconsinan Dune Fields of the Northern Great Plains, Canada. Geogr. Phys. Quat. 2004, 58, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Gardin, E.; Allemand, P.; Quantin, C.; Silvestro, S.; Delacourt, C. Dune Fields on Mars: Recorders of a Climate Change? Planet. Space Sci. 2012, 60, 314–321. [Google Scholar] [CrossRef]
- Bristow, C.S.; Augustinus, P.C.; Wallis, I.C.; Jol, H.M.; Rhodes, E.J. Investigation of the Age and Migration of Reversing Dunes in Antarctica Using GPR and OSL, with Implications for GPR on Mars. Earth Planet. Sci. Lett. 2010, 289, 30–42. [Google Scholar] [CrossRef]
- Kocurek, G. Interpretation of Ancient Eolian Sand Dunes. Annu. Rev. Earth Planet. Sci. 1991, 19, 43–75. [Google Scholar] [CrossRef]
- Sharp, R.P. Wind Ripples. The Journal of Geology 1963, 71, 617–636. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.; Michaels, T.I.; Karam, D.B. The Physics of Wind-Blown Sand and Dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [Green Version]
- Goossens, D. Aeolian Dust Ripples: Their Occurrence, Morphometrical Characteristics, Dynamics and Origin. Catena 1991, 18, 379–407. [Google Scholar] [CrossRef]
- Lämmel, M.; Meiwald, A.; Yizhaq, H.; Tsoar, H.; Katra, I.; Kroy, K. Aeolian Sand Sorting and Megaripple Formation. Nat. Phys. 2018, 14, 759–765. [Google Scholar] [CrossRef]
- Milana, J.P. Largest Wind Ripples on Earth? Geology 2009, 37, 343–346. [Google Scholar] [CrossRef]
- Yizhaq, H.; Katra, I.; Kok, J.F.; Isenberg, O. Transverse Instability of Megaripples. Geology 2012, 40, 459–462. [Google Scholar] [CrossRef]
- Yizhaq, H.; Bel, G.; Silvestro, S.; Elperin, T.; Kok, J.F.; Cardinale, M.; Provenzale, A.; Katra, I. The Origin of the Transverse Instability of Aeolian Megaripples. Earth Planet. Sci. Lett. 2019, 512, 59–70. [Google Scholar] [CrossRef]
- Yizhaq, H. A Simple Model of Aeolian Megaripples. Phys. A Stat. Mech. Its Appl. 2004, 338, 211–217. [Google Scholar] [CrossRef]
- Yizhaq, H. A Mathematical Model for Aeolian Megaripples on Mars. Phys. A Stat. Mech. Its Appl. 2005, 357, 57–63. [Google Scholar] [CrossRef]
- Isenberg, O.; Yizhaq, H.; Tsoar, H.; Wenkart, R.; Karnieli, A.; Kok, J.F.; Katra, I. Megaripple Flattening Due to Strong Winds. Geomorphology 2011, 131, 69–84. [Google Scholar] [CrossRef]
- Katra, I.; Yizhaq, H.; Kok, J.F. Mechanisms Limiting the Growth of Aeolian Megaripples. Geophys. Res. Lett. 2014, 41, 858–865. [Google Scholar] [CrossRef]
- Yizhaq, H.; Katra, I. Longevity of Aeolian Megaripples. Earth Planet. Sci. Lett. 2015, 422, 28–32. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Valdez, A. Variable Wind Ripple Migration at Great Sand Dunes National Park and Preserve, Observed by Timelapse Imaging. Geomorphology 2011, 133, 1–10. [Google Scholar] [CrossRef]
- Sakamoto-Arnold, C.M. Eolian Features Produced by the December 1977 Windstorm, Southern San Joaquin Valley, California. J. Geol. 1981, 89, 129–137. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Irwin, R.P.; Williams, S.H.; Bunch, F.; Valdez, A.; Stevens, S. The Rate of Granule Ripple Movement on Earth and Mars. Icarus 2009, 203, 71–76. [Google Scholar] [CrossRef]
- Fenton, L.K.; Mellon, M.T. Thermal Properties of Sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial Variations within the Proctor Crater Dune Field on Mars. J. Geophys. Res. E Planets 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Presley, M.A.; Christensen, P.R. Thermal Conductivity Measurements of Particulate Materials 1. A Review. J. Geophys. Res. E Planets 1997, 102, 6535–6549. [Google Scholar] [CrossRef]
- Lapotre, M.G.A.; Ewing, R.C.; Lamb, M.P.; Fischer, W.W.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Ballard, M.J.; Day, M.; Gupta, S.; et al. Large Wind Ripples on Mars: A Record of Atmospheric Evolution. Science 2016, 353, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, R.; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; et al. Wind-Driven Particle Mobility on Mars: Insights from Mars Exploration Rover Observations at “El Dorado” and Surroundings at Gusev Crater. J. Geophys. Res. 2008, 113, 1–70. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, S.; Fenton, L.K.; Vaz, D.A.; Bridges, N.T.; Ori, G.G. Ripple Migration and Dune Activity on Mars: Evidence for Dynamic Wind Processes. Geophys. Res. Lett. 2010, 37, 5–10. [Google Scholar] [CrossRef]
- Chojnacki, M.; Banks, M.E.; Fenton, L.K.; Urso, A.C. Boundary Condition Controls on the High-Sand-Flux Regions of Mars. Geology 2019, 47, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Fenton, L.K.; Silvestro, S.; Kocurek, G. Transverse Aeolian Ridge Growth Mechanisms and Pattern Evolution in Scandia Cavi, Mars. Front. Earth Sci. 2021, 8, 1–17. [Google Scholar] [CrossRef]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. E Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- ESRI ArcGIS Pro 2. 7. Environmental Systems Research Institute ArcGIS Desktop; ESRI: Redlands, CA, USA, 2020. [Google Scholar]
- Bourke, M.C.; Wilson, S.A.; Zimbelman, J.R. The Variability of Transverse Aeolian Ridges in Troughs on Mars. In Proceedings of the Lunar and Planetary Science XXXIV, March, TX, USA, 17–21 March 2003; p. 2090. [Google Scholar]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Bauer, B.O.; Namikas, S.L.; Ollerhead, J. Responses of Three-Dimensional Flow to Variations in the Angle of Incident Wind and Profile Form of Dunes: Greenwich Dunes, Prince Edward Island, Canada. Geomorphology 2009, 105, 127–138. [Google Scholar] [CrossRef]
- Hesp, P.A.; Smyth, T.A.G.; Nielsen, P.; Walker, I.J.; Bauer, B.O.; Davidson-Arnott, R. Flow Deflection over a Foredune. Geomorphology 2015, 230, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Walker, I.J.; Hesp, P.A. Fundamentals of Aeolian Sediment Transport: Airflow over Dunes; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 11, ISBN 9780080885223. [Google Scholar]
- Zimbelman, J.R.; Williams, S.H.; Johnston, A.K. Cross-Sectional Profiles of Sand Ripples, Megaripples, and Dunes: A Method for Discriminating between Formational Mechanisms. Earth Surf. Process. Landf. 2012, 37, 1120–1125. [Google Scholar] [CrossRef]
- Ewing, R.C.; Peyret, A.P.B.; Kocurek, G.; Bourke, M. Dune Field Pattern Formation and Recent Transporting Winds in the Olympia Undae Dune Field, North Polar Region of Mars. J. Geophys. Res. E Planets 2010, 115, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Swanson, T.; Mohrig, D.; Kocurek, G.; Perillo, M.; Venditti, J. Bedform Spurs: A Result of a Trailing Helical Vortex Wake. Sedimentology 2018, 65, 191–208. [Google Scholar] [CrossRef]
- Mason, J.; Cardenas, B.T.; Day, M.D.; Daniller-Varghese, M.; Brothers, S.C.; Kocurek, G.; Mohrig, D. Pattern Evolution and Interactions in Subaqueous Dune Fields: North Loup River, Nebraska, U.S.A. J. Sedimentary Res. 2020, 90, 1734–1746. [Google Scholar] [CrossRef]
- Nagle-Mcnaughton, T.; McClanahan, T.; Scuderi, L. PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars. Remote Sens. 2020, 12, 3607. [Google Scholar] [CrossRef]
- Golombek, M.; Robinson, K.; McEwen, A.; Bridges, N.; Ivanov, B.; Tornabene, L.; Sullivan, R. Constraints on Ripple Migration at Meridiani Planum from Opportunity and HiRISE Observations of Fresh Craters. J. Geophys. Res. E Planets 2010, 115, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Goudge, T.A.; Milliken, R.E.; Head, J.W.; Mustard, J.F.; Fassett, C.I. Sedimentological Evidence for a Deltaic Origin of the Western Fan Deposit in Jezero Crater, Mars and Implications for Future Exploration. Earth Planetary Sci. Lett. 2017, 458, 357–365. [Google Scholar] [CrossRef]
HiRISE Image | Resolution (m/pixel) | Crater Example Number(s) in Figure 3 and Figure 4 |
---|---|---|
ESP_015894_1545 | 0.25 | C, N, O |
ESP_017661_1545 | 0.50 | B |
ESP_027708_1815 | 0.25 | A |
ESP_055374_1510 | 0.50 | D |
ESP_064877_1670 | 0.25 | E |
ESP_065169_2085 | 0.50 | J |
ESP_065223_1855 | 0.25 | G |
ESP_065260_1715 | 0.25 | H |
PSP_010448_1530 | 0.25 | F, I, K, L, M, P |
Annotated Example | HiRISE Observation | Primary Ridges | Secondary Ridges | Tertiary Ridges | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Width (m) | Length (m) | Wavelength (m) | Width (m) | Length (m) | Wavelength (m) | Width (m) | Length (m) | Wavelength (m) | ||
A | ESP_015894_1545 | 100–500 | 20–40 | 35–70 | 30–60 | 3–5 | 8–12 | 2–4 | <1 | 1–3 |
B | ESP_017661_1545 | 100–1000 | 25–40 | 20–60 | 35–50 | 1–4 | 2–9 | 1–4 | 1 | 1–3 |
C | ESP_027708_1815 | 80–300 | 25–35 | 25–50 | 15–30 | 1–2 | 4–12 | 1–2 | <1 | 3–4 |
D | ESP_055374_1510 | 80–160 | 12–30 | 70–90 | 40–90 | 2–6 | 7–15 | 3–15 | 1 | 1–3 |
E | ESP_064877_1670 | 80–170 | 15–30 | 40–70 | 25–50 | 4–8 | 8–30 | 3–30 | 1 | 2–4 |
F | ESP_065169_2085 | 15–190 | 15–20 | 20–25 | 5–15 | 1–2 | 2–6 | -- | -- | -- |
G | ESP_065223_1855 | 60–250 | 15–25 | 25–80 | 15–80 | 2–4 | 10–25 | 10–25 | <1 | 3–8 |
H | ESP_065260_1715 | 40–150 | 10–25 | 15–55 | 8–15 | 1–2 | 5–10 | -- | -- | -- |
I | PSP_010448_1530 | 30–250 | 10–20 | 20–30 | 5–20 | 1–2 | 2–5 | -- | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagle-McNaughton, T.; Scuderi, L. Multistage Evolution in Transverse Aeolian Ridges. Remote Sens. 2021, 13, 1329. https://doi.org/10.3390/rs13071329
Nagle-McNaughton T, Scuderi L. Multistage Evolution in Transverse Aeolian Ridges. Remote Sensing. 2021; 13(7):1329. https://doi.org/10.3390/rs13071329
Chicago/Turabian StyleNagle-McNaughton, Timothy, and Louis Scuderi. 2021. "Multistage Evolution in Transverse Aeolian Ridges" Remote Sensing 13, no. 7: 1329. https://doi.org/10.3390/rs13071329
APA StyleNagle-McNaughton, T., & Scuderi, L. (2021). Multistage Evolution in Transverse Aeolian Ridges. Remote Sensing, 13(7), 1329. https://doi.org/10.3390/rs13071329