Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study-Area
2.2. Land Surface Temperature (LST) and Derivate Layers
2.2.1. Daytime Summer Land Surface Temperature (LST) Layer
2.2.2. The Urban Thermal Field Variance Index (UTFVI) Layer
- UTFVI < 0.000 (“excellent”) and absent SUHI;
- UTFVI between 0.000 and 0.005 (“good”) and weak SUHI;
- UTFVI between 0.005 and 0.010 (“normal”) and moderate SUHI;
- UTFVI between 0.010 and 0.015 (“bad”) and strong SUHI;
- UTFVI between 0.015 and 0.020 (“worse”) and stronger SUHI;
- UFTVI > 0.020 (“worst”) and strongest SUHI.
2.3. Thermal Hot-Spot Detection
- cool-spot: statistically significant clustering of low LST values (Gi* z-score < −1.65);
- hot-spot: statistically significant clustering of high LST values (Gi* z-score > 1.65);
- other areas with no significant spatial correlation (−1.65 < Gi* z-score < 1.65).
2.4. Urban Feature Layers
2.4.1. Vegetation and Water Bodies Layers
Normalized Difference Vegetation Index (NDVI)
Tree Cover
Water Bodies
2.4.2. Urban Surfaces Layers
Impervious Surface
Albedo
2.4.3. Urban Morphology, Atmospheric and Demographic Layers
Hot-Spot Surface Area and Shape Index (SI)
Sky View Factor (SVF)
Global Solar Radiation
Population Density
2.5. Methodologies to Perform Thermal Hot-Spot Statistical Analyses
- “Cool-spot ≥95 model”: where HOTSPOTLEV = 1 for LEVEL-2 (95%) and LEVEL-3 (99%);
- “Cool-spot ≥99 model”: where HOTSPOTLEV = 1 for LEVEL-3 (99%);
- “Hot-spot ≥95 model”: where HOTSPOTLEV = 1 for LEVEL-2 (95%) and LEVEL-3 (99%);
- “Hot-spot ≥99 model”: where HOTSPOTLEV = 1 for LEVEL-3 (99%).
3. Results
3.1. Daytime Summer LST and UTFVI Spatial Variations
3.2. Spatial Distribution and LST Variation Among Hot-Spot Classes
3.3. Statistical Analyses on Urban Features
3.3.1. Hot-Spot Statistics
3.3.2. Dominance Analysis
4. Discussion
4.1. The Role of Urban Features on Thermal Pattern
4.2. Cool-Spot Sites
4.3. Hot-Spot Sites
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Data and Materials Availability
Abbreviations
LST | Land surface temperature |
UHI | Urban heat island |
SUHI | Surface Urban Heat Island |
UTFVI | Urban Thermal Field Variance Index |
NDVI | Normalized Difference Vegetation Index |
TC | Tree cover |
WB | Water bodies |
ALB | Albedo |
IA | Impervious area |
SA | Surface area |
SHAPE | Shape Index |
SVF | Sky View Factor |
RJ | Global solar radiation of 21 June |
PD | Population density |
References
- Population Division, Department of Economic and Social Affairs, United Nations. World Urbanization Prospects: The 2018 Revision; Population Division, Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2019; ISBN 978-92-1-148319-2. [Google Scholar]
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; Publications Office of the European Union: Luxembourg, 2012; ISBN 978-92-79-26210-4. [Google Scholar] [CrossRef]
- Eurostat LUCAS Primary Data 2015. Available online: https://ec.europa.eu/eurostat/web/lucas (accessed on 1 December 2020).
- Munafò, M. (Ed.) Land Consumption, Land Cover Changes, and Ecosystem Services; Report SNPA 15/20; Italian National System for Environmental Protection: Rome, Italy, 2020; ISBN 978-88-448-1013-9.
- U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium; U.S. Environmental Protection Agency: Washington, DC, USA, 2008. Available online: https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 1 December 2020).
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A Simplified Urban-Extent Algorithm to Characterize Surface Urban Heat Islands on a Global Scale and Examine Vegetation Control on Their Spatiotemporal Variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Xia Cecilia, J.; Jin, C.; Li, X. Impact of Urban Morphology and Landscape Characteristics on Spatiotemporal Heterogeneity of Land Surface Temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface Urban Heat Islands in Italian Metropolitan Cities: Tree Cover and Impervious Surface Influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of Land Cover Types, Meteorological Conditions, Anthropogenic Heat and Urban Area on Surface Urban Heat Island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 22, 4247. [Google Scholar] [CrossRef]
- Osborne, P.E.; Alvares-Sanches, T. Quantifying How Landscape Composition and Configuration Affect Urban Land Surface Temperatures Using Machine Learning and Neutral Landscapes. Comput. Environ. Urban Syst. 2019, 76, 80–90. [Google Scholar] [CrossRef]
- Manteghi, G.; Limit, H.B.; Remaz, D. Water Bodies an Urban Microclimate: A Review. Mod. Appl. Sci. 2015, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, Landcover, and Daytime Surface Temperature Variation across an Urbanized Landscape. Earths Future 2017, 5, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the Impact of Urban Geometry and Pedestrian Level Greening on Outdoor Thermal Comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Musco, F. (Ed.) Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-10424-9. [Google Scholar]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and Day: The Influence and Relative Importance of Urban Characteristics on Remotely Sensed Land Surface Temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from Gardens: Biodiversity Conservation in Urban Environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. (Eds.) Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53750-4. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Getis, A.; Lacambra, J.; Mur, J.; Zoller, H.G. (Eds.) Spatial Econometrics and Spatial Statistics; Palgrave Macmillan: London, UK, 2004; ISBN 1-4039-0797-8. [Google Scholar]
- Wolf, T.; McGregor, G. The Development of a Heat Wave Vulnerability Index for London, United Kingdom. Weather Clim. Extrem. 2013, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Jenerette, G.D.; Pauliet, S. Locally Optimized Separability Enhancement Indices for Urban Land Cover Mapping: Exploring Thermal Environmental Consequences of Rapid Urbanization in Addis Ababa, Ethiopia. Remote Sens. Environ. 2016, 175, 14–31. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.-Y.; Zuo, S.-D.; Song, X.-D.; Liao, Y.-L.; Xu, C.-D.; Chen, Q.; Hua, L.-Z.; Li, Z.-W. Quantifying the Influences of Various Ecological Factors on Land Surface Temperature of Urban Forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. Identifying and Characterizing the Diurnal Evolution of Urban Land Surface Temperature Patterns. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Charmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Grigoraș, G.; Urițescu, B. Spatial Hotspot Analysis of Bucharest’s Urban Heat Island (UHI) Using Modis Data. Ann. Valahia Univ. Targoviste Geogr. Ser. 2018, 18, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Mavrakou, T.; Polydoros, A.; Cartalis, C.; Santamouris, M. Recognition of Thermal Hot and Cold Spots in Urban Areas in Support of Mitigation Plans to Counteract Overheating: Application for Athens. Climate 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Estoque, R.; Zhang, X.; Murayama, Y. Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Jamei, Y.; Rajagopalan, P.; Sun, Q. (Chayn) Spatial Structure of Surface Urban Heat Island and Its Relationship with Vegetation and Built-up Areas in Melbourne, Australia. Sci. Total Environ. 2019, 659, 1335–1351. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI and TIRS Data in Florence and Naples City, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U.; Avdan, Z.Y. Urban Heat Island Analysis Using the Landsat 8 Satellite Data: A Case Study in Skopje, Macedonia. Proceedings 2018, 2, 358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Stefano, V.D.; Orlandini, S.; Gensini, G.F. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The Impact of Built-up Surfaces on Land Surface Temperatures in Italian Urban Areas. Sci. Total Environ. 2016, 551, 317–326. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance Analysis: A New Approach to the Problem of Relative Importance of Predictors in Multiple Regression. Psychol. Bull. 1993, 114, 542–551. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and Projected Climate Shifts 1901-2100 Depicted by World Maps of the Köppen-Geiger Climate Classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Directorate-General of the Government of the Territory of Tuscany Region Territorial, Italian Ministry of Cultural Heritage and Activities and Tourism. “Piano di Indirizzo Territoriale con valenza di Piano Paesaggistico” of Tuscany Region, PIT-PPR. 2015. Available online: https://www.regione.toscana.it/piano-di-indirizzo-territoriale-con-valenza-di-piano-paesaggistico (accessed on 1 December 2020).
- Zhou, J.; Liang, S.; Cheng, J.; Wang, Y.; Ma, J. The GLASS Land Surface Temperature Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 493–507. [Google Scholar] [CrossRef]
- Duan, S.-B.; Han, X.-J.; Huang, C.; Li, Z.-L.; Wu, H.; Qian, Y.; Gao, M.; Leng, P. Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions. Remote Sens. 2020, 12, 2573. [Google Scholar] [CrossRef]
- U.S. Geological Survey Landsat 8 (L8). Data Users Handbook. Version 5.0. 2019. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 1 December 2020).
- R Core Team. R version 3.6.3; The R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://cran.r-project.org/bin/windows/base/old/3.6.3/ (accessed on 1 December 2020).
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin Documentation; Release 6.4.0.2. Free Software Foundation: Boston, MA, USA, 2020. [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Renard, F.; Alonso, L.; Fitts, Y.; Hadjiosif, A.; Comby, J. Evaluation of the Effect of Urban Redevelopment on Surface Urban Heat Islands. Remote Sens. 2019, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Portela, C.I.; Massi, K.G.; Rodrigues, T.; Alcântara, E. Impact of Urban and Industrial Features on Land Surface Temperature: Evidences from Satellite Thermal Indices. Sustain. Cities Soc. 2020, 56, 102100. [Google Scholar] [CrossRef]
- ESRI ArcGIS Pro Desktop: Release 2.6.0; Environmental Systems Research Institute: Redlands, CA, USA, 2020; Available online: https://desktop.arcgis.com/en/ (accessed on 1 December 2020).
- Watson, D.F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing 1985, 2, 315–327. [Google Scholar]
- Makinde, O.; Agbor, C. Geoinformatic Assessment of Urban Heat Island and Land Use/Cover Processes: A Case Study from Akure. Environ. Earth Sci. 2019, 78, 12. [Google Scholar] [CrossRef]
- Nguyen, T.; Lin, T.-H.; Chan, H.-P. The Environmental Effects of Urban Development in Hanoi, Vietnam from Satellite and Meteorological Observations from 1999–2016. Sustainability 2019, 11, 1768. [Google Scholar] [CrossRef] [Green Version]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and Classifying Green Infrastructure Typologies for Climate-Related Studies Based on Remote Sensing Data. Urban For. Urban Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- National Environmental Information System Network 2020. National Imperviousness Cartography for the Year 2017. Available online: http://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo/carta-nazionale-consumo-suolo-2017 (accessed on 1 December 2020).
- Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; De Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M. Land Consumption in Italy. J. Maps 2020, 16, 113–123. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Georgiadis, T.; Orlandini, S.; Munafò, M.; Congedo, L.; Rota, P.; Zazzi, M. Urban Imperviousness Effects on Summer Surface Temperatures Nearby Residential Buildings in Different Urban Zones of Parma. Remote Sens. 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.; Sauer, T.; Prueger, J. Radiation Balance. Encycl Soils Environ. 2005, 4, 355–359. [Google Scholar] [CrossRef]
- Li, H. (Ed.) Pavement Materials for Heat Island Mitigation. Design and Management Strategies; Butterworth-Heinemann: Oxford, UK, 2016; ISBN 978-0-12-803476-7. [Google Scholar] [CrossRef]
- Bonafoni, S.; Sekertekin, A. Albedo Retrieval from Sentinel-2 by New Narrow-to-Broadband Conversion Coefficients. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1618–1622. [Google Scholar] [CrossRef]
- Markvart, T.; Castaner, L. (Eds.) Practical Handbook of Photovoltaics Fundamentals and Applications; Elsevier Science Publishers: Amsterdam, The Netherlands, 2003; ISBN 1-85617-390-9. [Google Scholar]
- Toscano, P. (Ed.) Remote Sensing Applications for Agriculture and Crop Modelling; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; ISBN 978-3-03928-226-5. [Google Scholar]
- Zhou, B.; Rybski, D.; Kropp, J.P. The Role of City Size and Urban Form in the Surface Urban Heat Island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Pacific Northwest Research Station, Forest Service, U.S. Department of Agriculture: Corvallis, OR, USA, 1995. [CrossRef]
- Patton, D.R. A Diversity Index for Quantifying Habitat “Edge”. Wildl. Soc. Bull. 1975, 3, 171–173. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps 2012. Computer software program produced by the authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 1 December 2020).
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Sciaini, M.; Fritsch, M.; Scherer, C.; Simpkins, C.E. NLMR and Landscapetools: An Integrated Environment for Simulating and Modifying Neutral Landscape Models in R. Methods Ecol. Evol. 2018, 9, 2240–2248. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Svenson, M.K. Sky View Factor Analysis—Implications for Urban Air Temperature Differences. Meteorol. Appl. 2004, 11, 201–211. [Google Scholar] [CrossRef]
- Baghaeipoor, G.; Nashrollani, N. The Effect of Sky View Factor on Air Temperature in High-Rise Urban Residential Environments. J. Daylighting 2019, 6, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Hodul, M.; Knudby, A.; Ho, H. Estimation of Continuous Urban Sky View Factor from Landsat Data Using Shadow Detection. Remote Sens. 2016, 8, 568. [Google Scholar] [CrossRef] [Green Version]
- Bernard, J.; Bocher, E.; Petit, G.; Palominos, S. Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, M.; Ronda, R.J.; Theeuwes, N.E.; Pagani, G.A. Sky View Factor Calculations and Its Application in Urban Heat Island Studies. Urban Clim. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Rich, P.M. Characterizing Plant Canopies with Hemispherical Photographs. Remote Sens. Rev. 1990, 5, 13–29. [Google Scholar] [CrossRef]
- Fu, P.; Rich, P.M. A Geometric Solar Radiation Model with Applications in Agriculture and Forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Tiwari, A.; Meir, I.A.; Karnieli, A. Object-Based Image Procedures for Assessing the Solar Energy Photovoltaic Potential of Heterogeneous Rooftops Using Airborne LiDAR and Orthophoto. Remote Sens. 2020, 12, 223. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. Available online: http://qgis.osgeo.org (accessed on 1 December 2020).
- IBM Corp. IBM SPSS Statistic for Windows, Version 27.0; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Jackman, S. Pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, R package version 1.5.5; United States Studies Centre, University of Sydney: Sydney, NSW, Australia, 2020; Available online: https://github.com/atahk/pscl/ (accessed on 10 January 2021).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Navarrete, C.B.; Soares, F.C. Dominanceanalysis: Dominance Analysis. R Package Version 1.3.0. 2020. Available online: https://CRAN.R-project.org/package=dominanceanalysis (accessed on 1 December 2020).
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Basak, I. On the Use of Information Criteria in Analytic Hierarchy Process. Eur. J. Oper. Res. 2002, 141, 200–216. [Google Scholar] [CrossRef]
- Johnson, J.W.; Lebreton, J.M. History and Use of Relative Importance Indices in Organizational Research. Organ. Res. Methods 2004, 7, 238–257. [Google Scholar] [CrossRef]
- Azen, R.; Traxel, N. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression. J. Educ. Behav. Stat. 2009, 34, 319–347. [Google Scholar] [CrossRef]
- Luo, W.; Azen, R. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis. J. Educ. Behav. Stat. 2013, 38, 3–31. [Google Scholar] [CrossRef]
- McFadden, D. The Measurement of Urban Travel Demand. J. Public Econ. 1974, 3, 303–328. [Google Scholar] [CrossRef]
- Estrella, A. A New Measure of Fit for Equations with Dichotomous Dependent Variables. J. Bus. Econ. Stat. 1998, 16, 198–205. [Google Scholar] [CrossRef]
- Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis. Am. Stat. 2000, 54, 17–24. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The Relationships between Landscape Compositions and Land Surface Temperature: Quantifying Their Resolution Sensitivity with Spatial Regression Models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, C.; Tong, X.; Chen, S.; Lei, Z.; Wang, J. Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China. Remote Sens. 2019, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Weng, Q. A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature with Landsat Imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A Geographically Weighted Regression Analysis of the Underlying Factors Related to the Surface Urban Heat Island Phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xiang, Y.; Zhang, Y. Urban Design Factors Influencing Surface Urban Heat Island in the High-Density City of Guangzhou Based on the Local Climate Zone. Sensors 2019, 19, 3459. [Google Scholar] [CrossRef] [Green Version]
- Antoszewski, P.; Świerk, D.; Krzyżaniak, M. Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. Int. J. Environ. Res. Public Health 2020, 17, 7093. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H.; Kaloush, K.E. Environmental Impacts of Reflective Materials: Is High Albedo a ‘Silver Bullet’ for Mitigating Urban Heat Island? Renew. Sustain. Energy Rev. 2015, 47, 830–843. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, C.S.B.; Oke, T.R. An Evapotranspiration-Interception Model for Urban Areas. Water Resour. Res. 1991, 27, 1739–1755. [Google Scholar] [CrossRef]
- Liu, W.; Feddema, J.; Hu, L.; Zung, A.; Brunsell, N. Seasonal and Diurnal Characteristics of Land Surface Temperature and Major Explanatory Factors in Harris County, Texas. Sustainability 2017, 9, 2324. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Zhang, Y.; Zhu, J. Decreased Surface Albedo Driven by Denser Vegetation on the Tibetan Plateau. Environ. Res. Lett. 2014, 9, 104001. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Mackey, C.W.; Lee, X.; Smith, R.B. Remotely Sensing the Cooling Effects of City Scale Efforts to Reduce Urban Heat Island. Build. Environ. 2012, 49, 348–358. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-Scale Urban Surface Temperatures Are Related to Land-Cover Features and Residential Heat Related Health Impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Dong, L. Influence of a Large Urban Park on the Local Urban Thermal Environment. Sci. Total Environ. 2018, 622–623, 882–891. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Liang, S.; Zhou, T.; Du, X.; Xu, P.; Wu, D. Assessing the Thermal Contributions of Urban Land Cover Types. Landsc. Urban Plan. 2020, 204, 103927. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the Heat: An Enhanced Understanding of the Relationship between Urban Vegetation and Surface Temperature at the City Scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef] [Green Version]
- Shahidan, M.F.; Jones, P.J.; Gwilliam, J.; Salleh, E. An Evaluation of Outdoor and Building Environment Cooling Achieved through Combination Modification of Trees with Ground Materials. Build. Environ. 2012, 58, 245–257. [Google Scholar] [CrossRef]
- Rahman, M.A.; Armson, D.; Ennos, A.R. A Comparison of the Growth and Cooling Effectiveness of Five Commonly Planted Urban Tree Species. Urban Ecosyst. 2015, 18, 371–389. [Google Scholar] [CrossRef]
- Li, X.; Kamarianakis, Y.; Ouyang, Y.; Turner II, B.L.; Brazel, A. On the Association between Land System Architecture and Land Surface Temperatures: Evidence from a Desert Metropolis—Phoenix, Arizona, USA. Landsc. Urban Plan. 2017, 163, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How Can Urban Blue-Green Space Be Planned for Climate Adaption in High-Latitude Cities? A Seasonal Perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the Relationship between Urban Blue Infrastructure and Land Surface Temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sens. 2019, 11, 959. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; He, X.; Yu, L.; Yang, J.; Yan, F.; Bu, K.; Chang, L.; Zhang, S. The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City. Remote Sens. 2017, 9, 1066. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Teng, M.; He, W.; Liu, A.; Li, Y.; Wang, P. Impervious Surface Area Is a Key Predictor for Urban Plant Diversity in a City Undergone Rapid Urbanization. Sci. Total Environ. 2019, 650, 335–342. [Google Scholar] [CrossRef]
- Daramola, M.T. Analysis of the Urban Surface Thermal Condition Based on Sky-View Factor and Vegetation Cover. Remote Sens. Appl. 2019, 15, 100253. [Google Scholar] [CrossRef]
- Al-hafiz, B.; Musy, M.; Hasan, T. A Study on the Impact of Changes in the Materials Reflection Coefficient for Achieving Sustainable Urban Design. Procedia Environ. Sci. 2017, 38, 562–570. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of Urban Form on the Urban Heat Island Effect Based on Spatial Regression Model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P.; Ye, X.; Wu, C. Assessing Spatial Pattern of Urban Thermal Environment in Shanghai, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 899–911. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Chen, L.; Yang, L.; Chen, A. Assessing the Stability of Annual Temperatures for Different Urban Functional Zones. Build. Environ. 2013, 65, 90–98. [Google Scholar] [CrossRef]
- Scarano, M.; Sobrino, J.A. On the Relationship between the Sky View Factor and the Land Surface Temperature Derived by Landsat-8 Images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [Google Scholar] [CrossRef]
- Zhang, J.; Heng, C.K.; Malone-Lee, L.C.; Hii, D.J.C.; Janssen, P.; Leung, K.S.; Tan, B.K. Evaluating Environmental Implications of Density: A Comparative Case Study on the Relationship between Density, Urban Block Typology and Sky Exposure. Autom. Constr. 2012, 22, 90–101. [Google Scholar] [CrossRef]
- Cierniewski, J.; Karnieli, A.; Kazmierowski, C.; Krolewicz, S.; Piekarczyk, J.; Lewinska, K.; Goldberg, A.; Wesolowski, R.; Orzechowski, M. Effects of Soil Surface Irregularities on the Diurnal Variation of Soil Broadband Blue-Sky Albedo. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary Assessment of 20-m Surface Albedo Retrievals from Sentinel-2A Surface Reflectance and MODIS/VIIRS Surface Anisotropy Measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. Disproportionately Higher Exposure to Urban Heat in Lower-Income Neighborhoods: A Multi-City Perspective. Environ. Res. Lett. 2019, 14, 105003. [Google Scholar] [CrossRef] [Green Version]
Gi* Hot-Spot Classes | Confidence Levels | Probability (Gi* p-Value) | Standard Deviation (Gi* z-Score) |
---|---|---|---|
Cool-spot99 (LEVEL-3) | 99% | <0.01 | <−2.58 |
Cool-spot95 (LEVEL-2) | 95% | <0.05 | <−1.96 |
Cool-spot90 (LEVEL-1) | 90% | <0.10 | <−1.65 |
Other areas | Not significant | 0 | −1.65 < z-score < 1.65 |
Hot-spot90 (LEVEL-1) | 90% | <0.10 | >1.65 |
Hot-spot95 (LEVEL-2) | 95% | <0.05 | >1.96 |
Hot-spot99 (LEVEL-3) | 99% | <0.01 | >2.58 |
Study-Areas | UTFVI Coverage Area (km2) (%) | |||||
---|---|---|---|---|---|---|
Excellent <0.000 | Good 0.000–0.005 | Normal 0.005–0.010 | Bad 0.010–0.015 | Worse 0.015–0.020 | Worst >0.020 | |
Florence | 32.4 (33.6) | 16.9 (17.6) | 17.1 (17.8) | 18.5 (19.2) | 9.7 (10.1) | 1.6 (1.7) |
Pistoia | 42.4 (47.4) | 26.7 (29.8) | 13.3 (14.8) | 5.4 (6.0) | 1.6 (1.8) | 0.2 (0.2) |
Prato | 16.8 (21.2) | 17.1 (21.5) | 21.4 (26.9) | 15.6 (19.6) | 7.1 (8.9) | 1.5 (1.9) |
Metropolitan area | 296.8 (44.0) | 147.7 (21.9) | 119.1 (17.6) | 74.9 (11.1) | 29.7 (4.4) | 6.6 (1.0) |
Study-Areas | Gi* Hot-Spot Classes | SA (km2) (%) | N. Hot-Spot Polygons/SA (n/km2) | LST (°C) | |||
---|---|---|---|---|---|---|---|
Mean | Min | Max | Sd | ||||
Florence | Total cool-spots | 3.2 (3.3) | 137.8 | 27.6 | 27.0 | 28.3 | 0.5 |
Cool-spot99 (LEVEL-3) | 0.5 (0.5) | 22.0 | 25.3 | 24.9 | 26.1 | 0.3 | |
Cool-spot95 (LEVEL-2) | 1.3 (1.3) | 70.8 | 26.6 | 26.2 | 27.3 | 0.4 | |
Cool-spot90 (LEVEL-1) | 1.4 (1.5) | 241.4 | 27.9 | 27.2 | 28.6 | 0.5 | |
Other areas | 79.4 (82.4) | 0 | 33.4 | 24.7 | 39.0 | 2.3 | |
Hot-spot90 (LEVEL-1) | 8.0 (8.3) | 52.6 | 37.3 | 36.7 | 37.8 | 0.4 | |
Hot-spot95 (LEVEL-2) | 5.0 (5.2) | 22.0 | 38.2 | 37.6 | 38.7 | 0.3 | |
Hot-spot99 (LEVEL-3) | 0.8 (0.8) | 25.0 | 39.9 | 39.3 | 40.6 | 0.3 | |
Total hot-spots | 13.8 (14.3) | 39.9 | 37.6 | 37 | 38.1 | 0.4 | |
Pistoia | Total cool-spots | 8.5 (9.5) | 169.5 | 27.3 | 26.5 | 28.2 | 0.6 |
Cool-spot99 (LEVEL-3) | 2.6 (2.9) | 32.7 | 25.1 | 24.6 | 26.1 | 0.4 | |
Cool-spot95 (LEVEL-2) | 3.9 (4.4) | 88.5 | 26.4 | 25.6 | 27.4 | 0.6 | |
Cool-spot90 (LEVEL-1) | 2.0 (2.2) | 505.5 | 27.8 | 27.0 | 28.6 | 0.7 | |
Other areas | 78.7 (87.9) | 0 | 32.7 | 22.8 | 37.8 | 1.9 | |
Hot-spot90 (LEVEL-1) | 1.5 (1.7) | 44.0 | 37.2 | 36.6 | 37.6 | 0.3 | |
Hot-spot95 (LEVEL-2) | 0.7 (0.8) | 24.3 | 38.1 | 37.4 | 38.5 | 0.3 | |
Hot-spot99 (LEVEL-3) | 0.1 (0.1) | 10.0 | 40.1 | 39.0 | 41.0 | 0.5 | |
Total hot-spots | 2.3 (2.6) | 36.5 | 37.4 | 36.8 | 37.8 | 0.3 | |
Prato | Total cool-spots | 2.8 (3.5) | 132.1 | 27.3 | 26.7 | 28.1 | 0.5 |
Cool-spot99 (LEVEL-3) | 0.7 (0.9) | 35.7 | 25.3 | 24.9 | 25.9 | 0.3 | |
Cool-spot95 (LEVEL-2) | 1.3 (1.6) | 54.6 | 26.6 | 25.9 | 27.7 | 0.6 | |
Cool-spot90 (LEVEL-1) | 0.8 (1.0) | 342.5 | 27.7 | 27.1 | 28.5 | 0.6 | |
Other areas | 66.4 (83.5) | 0 | 34.0 | 23.4 | 38.5 | 2.0 | |
Hot-spot90 (LEVEL-1) | 5.7 (7.2) | 69.1 | 37.4 | 36.8 | 37.9 | 0.4 | |
Hot-spot95 (LEVEL-2) | 4.1 (5.2) | 23.9 | 38.1 | 37.6 | 38.6 | 0.3 | |
Hot-spot99 (LEVEL-3) | 0.5 (0.6) | 56.0 | 39.7 | 39.3 | 40.0 | 0.2 | |
Total hot-spots | 10.3 (13.0) | 50.5 | 37.6 | 37.0 | 38.1 | 0.4 | |
Metropolitan area | Total cool-spots | 77.7 (11.5) | 134.3 | 27.4 | 26.6 | 28.2 | 0.6 |
Cool-spot99 (LEVEL-3) | 25.5 (3.8) | 20.2 | 25.3 | 24.8 | 26.1 | 0.4 | |
Cool-spot95 (LEVEL-2) | 34.3 (5.0) | 70.4 | 26.5 | 25.8 | 27.5 | 0.6 | |
Cool-spot90 (LEVEL-1) | 17.9 (2.7) | 419.2 | 27.8 | 27.0 | 28.6 | 0.7 | |
Other areas | 553.2 (82.0) | 0 | 33.0 | 22.7 | 39.6 | 2.2 | |
Hot-spot90 (LEVEL-1) | 24.2 (3.6) | 76.0 | 37.3 | 36.7 | 37.8 | 0.4 | |
Hot-spot95 (LEVEL-2) | 16.9 (2.5) | 22.5 | 38.2 | 37.5 | 38.7 | 0.4 | |
Hot-spot99 (LEVEL-3) | 2.9 (0.4) | 35.9 | 39.8 | 39.2 | 40.4 | 0.3 | |
Total hot-spots | 44.0 (6.5) | 52.8 | 37.6 | 36.9 | 38.1 | 0.4 |
Urban Features | Total Cool-Spots | Cool-Spot90 (LEVEL-1) | Cool-Spot95 (LEVEL-2) | Cool-Spot99 (LEVEL-3) |
---|---|---|---|---|
NDVI (adim.) | 0.79 *** | 0.77 a | 0.84 b | 0.91 c |
TC (%) (m2) | 85.0 *** (6825) | 82.8 a (2028) | 89.1 b (12,858) | 97.0 c (45,676) |
WB (%) (m2) | 3.5 *** (119) | 3.7 a (71) | 3.4 b (250) | 1.7 a (188) |
IA (%) (m2) | 5.4 *** (259) | 6.0 a (127) | 4.5 b (512) | 2.7 b (933) |
ALB (adim.) | 0.16 *** | 0.17 a | 0.16 b | 0.15 c |
SA (km2) | 77.7 *** | 17.9 a | 34.3 b | 25.5 c |
SI (adim.) | 1.2 *** | 1.1 a | 1.3 b | 1.4 c |
SVF (adim.) | 0.69 *** | 0.70 a | 0.66 b | 0.59 c |
RJ (Wh/m2) | 4505.19 *** | 4572.11 a | 4330.83 b | 4072.41 c |
PD (people per km2) | 14.0 *** | 16.0 a | 10.7 b | 1.5 a |
Urban Features | Total Hot-Spots | Hot-Spot90 (LEVEL-1) | Hot-Spot95 (LEVEL-2) | Hot-Spot99 (LEVEL-3) |
---|---|---|---|---|
NDVI (adim.) | 0.18 *** | 0.20 a | 0.14 b | 0.06 c |
TC (%) (m2) | 1.7 *** (90) | 2.0 a (92) | 0.6 a (104) | <0.1 b (14) |
WB (%) (m2) | 0.1 (6) | 0.2 a (6) | <0.1 a (10) | 0 |
IA (%) (m2) | 79.1 *** (16,240) | 76.4 a (11,001) | 86.6 b (38,100) | 97.8 b (24,485) |
ALB (adim.) | 0.24 | 0.24 a | 0.24 a | 0.24 a |
SA (km2) | 44.0 *** | 24.2 a | 16.9 b | 2.9 b |
SI (adim.) | 1.3 *** | 1.3 a | 1.4 b | 1.2 b |
SVF (adim.) | 0.80 ** | 0.80 a | 0.78 b | 0.79 ab |
RJ (Wh/m2) | 5236.5 * | 5260.97 a | 5235.80 a | 5408.18 b |
PD (people per km2) | 1895.5 *** | 1849.5 a | 2532.8 b | 319.7 c |
Cool≥95 Model | Cool≥99 Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
McFadden’s R2 = 0.156 AIC = 10,823 | McFadden’s R2 = 0.181 AIC = 867.23 | ||||||||
Coefficients | Coefficients | ||||||||
Estimate | Std. Error | Z-Value | P-Value | Estimate | Std. Error | Z-Value | P-Value | ||
Intercept | −2.040e+00 | 2.289e−01 | −8.915 | *** | Intercept | −4.140e+00 | +7.634e−01 | −5.423 | *** |
NDVI | +2.419e+00 | +1.817e−01 | +13.316 | *** | NDVI | +3.470e+00 | +7.236e−01 | +4.795 | *** |
TC | +1.086e−04 | +4.883e−06 | +22.241 | *** | TC | +1.370e−05 | +1.649e−06 | +8.310 | *** |
WB | +1.854e−04 | +4.684e−05 | +3.959 | *** | ALB | −1.796e+01 | +3.435e+00 | −5.228 | *** |
ALB | −8.096e+00 | +9.198e−01 | −8.802 | *** | - | - | - | - | - |
Cool≥95 Model | Cool≥99 Model | ||
---|---|---|---|
Predictors | Average Contribution | Predictors | Average Contribution |
McFadden’s R2 | McFadden’s R2 | ||
TC | 0.114 | TC | 0.077 |
NDVI | 0.030 | NDVI | 0.073 |
ALB | 0.009 | ALB | 0.032 |
WB | 0.003 |
Hot≥95 Model | Hot≥99 Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
McFadden’s R2 = 0.118 AIC = 2154.9 | McFadden’s R2 = 0.241 AIC = 663.99 | ||||||||
Coefficients | Coefficients | ||||||||
Estimate | Std. Error | Z-Value | p-Value | Estimate | Std. Error | Z-Value | p-Value | ||
Intercept | −2.267e+00 | +1.004e+00 | −2.259 | * | Intercept | +2.564e+00 | +9.784e-01 | +2.620 | ** |
NDVI | −5.319e+00 | +6.093e−01 | −8.729 | *** | NDVI | −1.868e+01 | +2.050e+00 | −9.112 | *** |
TC | −1.703e−03 | +3.845e−04 | −4.430 | *** | ALB | −8.452e+00 | +2.272e+00 | −3.720 | *** |
IA | +1.677e−05 | +2.530e−06 | +6.628 | *** | SVF | −1.847e+00 | +8.909e−01 | −2.073 | * |
ALB | −5.733e+00 | +1.355e+00 | −4.230 | *** | PD | −2.211e−04 | +8.611e−05 | −2.568 | * |
SI | −5.265e−01 | +1.832e−01 | −2.874 | ** | - | - | - | - | - |
SVF | −4.143e+00 | +8.676e−01 | −4.775 | *** | - | - | - | - | - |
RJ | +1.306e−03 | +2.632e04 | +4.962 | *** | - | - | - | - | - |
PD | +3.763e−05 | +1.762e−05 | +2.135 | * | - | - | - | - | - |
Hot≥95 Model | Hot≥99 Model | ||
---|---|---|---|
Predictors | Average Contribution | Predictors | Average Contribution |
McFadden’s R2 | McFadden’s R2 | ||
NDVI | 0.051 | NDVI | 0.199 |
SI | 0.029 | PD | 0.029 |
IA | 0.027 | ALB | 0.008 |
SVF | 0.023 | SVF | 0.005 |
RJ | 0.015 | ||
TC | 0.009 | ||
ALB | 0.004 | ||
PD | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. https://doi.org/10.3390/rs13030538
Guerri G, Crisci A, Messeri A, Congedo L, Munafò M, Morabito M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sensing. 2021; 13(3):538. https://doi.org/10.3390/rs13030538
Chicago/Turabian StyleGuerri, Giulia, Alfonso Crisci, Alessandro Messeri, Luca Congedo, Michele Munafò, and Marco Morabito. 2021. "Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers" Remote Sensing 13, no. 3: 538. https://doi.org/10.3390/rs13030538
APA StyleGuerri, G., Crisci, A., Messeri, A., Congedo, L., Munafò, M., & Morabito, M. (2021). Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sensing, 13(3), 538. https://doi.org/10.3390/rs13030538