Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. NASA Ocean Color Data
2.2.2. GHRSST Products
2.2.3. RMESS Products
2.2.4. CMEMS Dataset
2.3. Methods
2.3.1. Algorithm to Retrieve SDD
2.3.2. Trend Analysis
2.3.3. Empirical Orthogonal Function Decomposition
3. Results
3.1. Spatial and Temporal Patterns
3.1.1. Interannual Variations in SDD Dynamics
3.1.2. Seasonal Patterns of SDD and Related Marine Environmental Factors
3.2. Variations of Marine Environmental Factors and Relevance for SDD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, J.T.O.; Press, C. Light and photosynthesis in aquatic ecosystems. J. Ecol. 1994, 45. [Google Scholar] [CrossRef]
- Lorenzen, M.W. Use of chlorophyll-Secchi disk relationships. Limnol. Oceanogr. 1980, 25, 371–372. [Google Scholar] [CrossRef]
- Phlips, E.J.; Aldridge, F.J.; Schelske, C.L.; Crisman, T.L. Relationships between light availability, chlorophyll a, and tripton in a large, shallow subtropical lake. Limnol. Oceanogr. 1995, 40, 416–421. [Google Scholar] [CrossRef]
- Kim, S.H.; Yang, C.S.; Ouchi, K. Spatio-Temporal patterns of Secchi depth in the waters around the Korean Peninsula using MODIS data. Estuar. Coast. Shelf Sci. 2015, 164, 172–182. [Google Scholar] [CrossRef]
- Kukushkin, A.S. Long-Term seasonal variability of water transparency in the surface layer of the deep part of the Black Sea. Russ. Meteorol. Hydrol. 2014, 39, 178–186. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Lillesand, T.M.; Yandell, B.S. Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters. Int. J. Remote Sens. 1991, 12, 2045–2063. [Google Scholar] [CrossRef]
- Kemp, W.M.; Boynton, W.R.; Adolf, J.E.; Boesch, D.F.; Boicourt, W.C.; Brush, G.S.; Cornwell, J.C.; Fisher, T.R.; Glibert, P.M.; Hagy, J.D. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 2005, 303, 1–29. [Google Scholar] [CrossRef]
- Testa, J.M.; Lyubchich, V.; Zhang, Q. Patterns and trends in Secchi disk depth over three decades in the Chesapeake Bay estuarine complex. Estuaries Coasts 2019, 42, 927–943. [Google Scholar] [CrossRef]
- Taillie, D.M.; O’Neil, J.M.; Dennison, W.C. Water quality gradients and trends in New York Harbor. Reg. Stud. Mar. Sci. 2020, 33. [Google Scholar] [CrossRef]
- Gai, Y.Y.; Yu, D.F.; Zhou, Y.; Yang, L.; Chen, C.; Chen, J. An Improved Model for Chlorophyll-a Concentration Retrieval in Coastal Waters Based on UAV-Borne Hyperspectral Imagery: A Case Study in Qingdao, China. Water 2020, 12, 2769. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, T.; Su, Y. Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance. Opt. Express 2013, 21, 15287–15297. [Google Scholar] [CrossRef] [PubMed]
- Tyler, J.E. The Secchi disc. Limnol. Oceanogr. 1968, 8, 1–6. [Google Scholar] [CrossRef]
- Preisendorfer, R.W. Secchi disk science: Visual optics of natural waters. Limnol. Oceanogr. 1986, 31, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Fleminglehtinen, V.; Laamanen, M. Long-Term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuar. Coast. Shelf Sci. 2012, 102, 1–10. [Google Scholar] [CrossRef]
- Gregg, W.W. Ocean-Colour Data Merging; IOCCG: Reports of the International Ocean-Colour Coordinating Group, No. 6; International Ocean-Colour Coordinating Group: Monterey, CA, USA, 2007. [Google Scholar]
- Mcclain, C.R. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of remote sensing in water resource management: The case study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Chen, Z.; Mullerkarger, F.E.; Hu, C. Remote sensing of water clarity in Tampa Bay. Remote Sens. Environ. 2007, 109, 249–259. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.L.; Wu, Y.H.; Zhu, L.P. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247. [Google Scholar] [CrossRef]
- Li, N.; Shi, K.; Zhang, Y.L.; Gong, Z.J.; Peng, K.; Zhang, Y.B.; Zha, Y. Decline in transparency of Lake Hongze from long-term MODIS observations: Possible causes and potential significance. Remote Sens. 2019, 11, 177. [Google Scholar] [CrossRef] [Green Version]
- Song, K.S.; Liu, G.; Wang, Q.; Wen, Z.D.; Lyu, L.L.; Du, Y.X.; Sha, L.W.; Fang, C. Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sens. Environ. 2020, 243. [Google Scholar] [CrossRef]
- Liu, D.; Duan, H.T.; Loiselle, S.; Hu, C.M.; Zhang, G.Q.; Li, J.L.; Yang, H.; Thompson, J.R.; Cao, Z.G.; Shen, M.; et al. Observations of water transparency in China’s lakes from space. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 11. [Google Scholar] [CrossRef]
- Zeng, S.; Lei, S.H.; Li, Y.M.; Lyu, H.; Xu, J.F.; Dong, X.Z.; Wang, R.; Yang, Z.Q.; Li, J.C. Retrieval of Secchi Disk Depth in Turbid Lakes from GOCI Based on a New Semi-Analytical Algorithm. Remote Sens. 2020, 12, 1516. [Google Scholar] [CrossRef]
- Xue, Y.H.; Xiong, X.J.; Liu, Y.Q. Distribution features and seasonal variability of the transparency in offshore waters of China. Adv. Mar. Sci. 2015, 33, 38–44. [Google Scholar] [CrossRef]
- Chen, J.; Han, Q.J.; Chen, Y.L.; Li, Y.D. A Secchi Depth Algorithm Considering the Residual Error in Satellite Remote Sensing Reflectance Data. Remote Sens. 2019, 11, 1948. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.L.; Lee, Z.P.; Shi, L.H.; Lin, G.; Wei, G.M.; Li, X.D. Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sens. Environ. 2016, 186, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Wang, S.Q.; Qiu, Z.F.; Sun, D.Y.; Bilal, M. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea. Opt. Express 2018, 26, 12191–12209. [Google Scholar] [CrossRef]
- Lee, Z.P.; Shang, S.L.; Hu, C.M.; Du, K.P.; Weidemann, A.; Hou, W.L.; Lin, J.F.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Amante, C.; Eakins, B. ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. Natl. Geophys. Data Cent. NOAA 2009, 10. [Google Scholar] [CrossRef]
- Cui, T.W.; Zhang, J.; Groom, S.; Sun, L.; Smyth, T.; Sathyendranath, S. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters. Remote Sens. Environ. 2010, 114, 2326–2336. [Google Scholar] [CrossRef]
- Wang, S.Q.; Huan, Y.; Qiu, Z.F.; Sun, D.Y.; Zhang, H.L.; Zheng, L.F.; Xiao, C. Remote sensing of particle cross-sectional area in the Bohai Sea and Yellow Sea: Algorithm development and application implications. Remote Sens. 2016, 8, 841. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Shi, J.; Lu, Y.Y.; Peng, Y.A. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1025–1034. [Google Scholar] [CrossRef]
- Jiang, W.; Pohlmann, T.; Sun, J.; Starke, A. SPM transport in the Bohai Sea: Field experiments and numerical modelling. J. Mar. Syst. 2004, 44, 175–188. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.M.; Lee, Z.P.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.W.; Tang, J.W.; Dong, Q.; Song, Q.T.; Ding, J. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 2010, 114, 392–403. [Google Scholar] [CrossRef]
- Frouin, R.; Pinker, R.T. Estimating Photosynthetically Active Radiation (PAR) at the earth’s surface from satellite observations. Remote Sens. Environ. 1995, 51, 98–107. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Chen, R.F.; Gardner, G.B. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q. Inversion of chromophoric dissolved organic matter from EO-1 Hyperion imagery for turbid estuarine and coastal waters. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3286–3298. [Google Scholar] [CrossRef]
- Casey, K.S.; Brandon, T.B.; Cornillon, P.; Evans, R. The past, present, and future of the AVHRR Pathfinder SST program. In Oceanography from Space; Springer: Cham, Switzerland, 2010; pp. 273–287. [Google Scholar]
- Saha, K.; Zhao, X.; Zhang, H.; Casey, K.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.; Evans, R.; Ryan, T.; Relph, J. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4 km Sea Surface Temperature for 1981–Present; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Carton, J.A.; Croizé-Fillon, D.; Chapron, B. Matching ASCAT and QuikSCAT winds. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Mortin, J.; Howell, S.E.L.; Wang, L.; Derksen, C.; Svensson, G.; Graversen, R.G.; Schrøder, T.M. Extending the QuikSCAT record of seasonal melt-freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ. 2014, 141, 214–230. [Google Scholar] [CrossRef]
- Salon, S.; Cossarini, G.; Bolzon, G.; Feudale, L.; Lazzari, P.; Teruzzi, A.; Solidoro, C.; Crise, A. Marine Ecosystem forecasts: Skill performance of the CMEMS Mediterranean Sea model system. Ocean Sci. Discuss. 2019. [Google Scholar] [CrossRef]
- Nardelli, B.B. A novel approach for the high-resolution interpolation of in situ sea surface salinity. J. Atmos. Ocean. Technol. 2012, 29, 867–879. [Google Scholar] [CrossRef]
- Doron, M.; Babin, M.; Hembise, O.; Mangin, A.; Garnesson, P. Ocean transparency from space: Validation of algorithms using MERIS, MODIS and SeaWiFS data. Remote Sens. Environ. 2011, 115, 2986–3001. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.L.; Song, K.S.; Liu, M.L.; Zhou, Y.Q.; Zhang, Y.B.; Li, Y.; Zhu, G.W.; Qin, B.Q. A semi-analytical approach for remote sensing of trophic state in inland waters: Bio-Optical mechanism and application. Remote Sens. Environ. 2019, 232, 12. [Google Scholar] [CrossRef]
- Lee, Z.P. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Lee, Z.P.; Hu, C.M.; Shang, S.L.; Du, K.P.; Lewis, M.; Arnone, R.; Brewin, R. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing: Penetration of UV-visible solar light. J. Geophys. Res. Ocean. 2013, 118, 4241–4255. [Google Scholar] [CrossRef] [Green Version]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef]
- Blackwell, H.R. Contrast thresholds of the human eye. JOSA 1946, 36, 624–643. [Google Scholar] [CrossRef]
- Fuentes, I.; van Ogtrop, F.; Vervoort, R.W. Long-Term surface water trends and relationship with open water evaporation losses in the Namoi catchment, Australia. J. Hydrol. 2020, 584. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Bradley, B.A.; Jacob, R.W.; Hermance, J.F.; Mustard, J.F. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 2007, 106, 137–145. [Google Scholar] [CrossRef]
- North, G.R. Empirical orthogonal functions and normal modes. J. Atmos. Sci. 1984, 41, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Preisendorfer, R.W.; Mobley, C.D. Principal component analysis in meteorology and oceanography. Dev. Atmos. Sci. 1988, 17. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Zhu, L.B.; Zhao, B.R. Distributions and variations of the transparency in the Bohai Sea, Yellow Sea and East China Sea. Trans. Oceanol. Limnol. 1991, 1–11. [Google Scholar] [CrossRef]
- Su, J. Circulation dynamics of the China Seas north of 18° N. Sea 1998, 11, 483–505. [Google Scholar] [CrossRef]
- Tew-Kai, E.; Marsac, F. Patterns of variability of sea surface chlorophyll in the Mozambique Channel: A quantitative approach. J. Mar. Syst. 2009, 77, 77–88. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.H. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea. Prog. Oceanogr. 2012, 104, 30–45. [Google Scholar] [CrossRef]
- Rinaldi, E.; Nardelli, B.B.; Volpe, G.; Santoleri, R. Chlorophyll distribution and variability in the Sicily Channel (Mediterranean Sea) as seen by remote sensing data. Cont. Shelf Res. 2014, 77, 61–68. [Google Scholar] [CrossRef]
- Sun, D.Y.; Li, Y.M.; Wang, Q.; Le, C.F.; Lv, H.; Huang, C.C.; Gong, S.Q. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification. Photochem. Photobiol. Sci. 2012, 11, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, Y.; Le, C.; Shi, K.; Huang, C.; Gong, S.; Yin, B. A semi-analytical approach for detecting suspended particulate composition in complex turbid inland waters (China). Remote Sens. Environ. 2013, 134, 92–99. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.H.; Shen, M.; Li, Y.; Duan, H.T.; Cao, Z.G.; Wang, D.; Xiong, J.F. Variations of suspended particulate concentration and composition in Chinese lakes observed from Sentinel-3A OLCI images. Sci. Total Environ. 2020, 721. [Google Scholar] [CrossRef] [PubMed]
- Binding, C.E.; Greenberg, T.A.; Bukata, R.P. An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. J. Gt. Lakes Res. 2012, 38, 107–116. [Google Scholar] [CrossRef]
- Al Kaabi, M.R.; Zhao, J.; Ghedira, H. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sens. 2016, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xing, Q.G.; Li, X.R.; Yu, D.F.; Zhang, J.; Zou, J.Q. Assessment of the Impacts from the World’s Largest Floating Macroalgae Blooms on the Water Clarity at the West Yellow Sea Using MODIS Data (2002–2016). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1397–1402. [Google Scholar] [CrossRef]
- Padial, A.A.; Thomaz, S.M. Prediction of the light attenuation coefficient through the Secchi disk depth: Empirical modeling in two large Neotropical ecosystems. Limnology 2008, 9, 143–151. [Google Scholar] [CrossRef]
- Lee, Z.P.; Shang, S.L.; Qi, L.; Yan, J.; Lin, G. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens. Environ. 2016, 177, 101–106. [Google Scholar] [CrossRef]
- Chaves, J.E.; Werdell, P.J.; Proctor, C.W.; Neeley, A.R.; Freeman, S.A.; Thomas, C.S.; Hooker, S.B. Assessment of ocean color data records from MODIS-Aqua in the western Arctic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 32–43. [Google Scholar] [CrossRef]
- Uudeberg, K.; Aavaste, A.; Koks, K.L.; Ansper, A.; Uusoue, M.; Kangro, K.; Ansko, I.; Ligi, M.; Toming, K.; Reinart, A. Optical water type guided approach to estimate optical water quality parameters. Remote Sens. 2020, 12, 391. [Google Scholar] [CrossRef] [Green Version]
- Belanger, S.; Babin, M.; Larouche, P. An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters. J. Geophys. Res. Ocean. 2008, 113, 14. [Google Scholar] [CrossRef] [Green Version]
- Alikas, K.; Kratzer, S. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 2017, 77, 218–227. [Google Scholar] [CrossRef]
- Sun, D.Y.; Ling, Z.B.; Wang, S.Q.; Qiu, Z.F.; Huan, Y.; Mao, Z.H.; He, Y.J. A remote-sensing method to estimate bulk refractive index of suspended particles from GOCI satellite measurements over Bohai Sea and Yellow Sea. Appl. Sci. 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.; Grossart, H.; Ibelings, B.W. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2018, 63, 628–646. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hou, X.J.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Capuzzo, E.; Stephens, D.; Silva, T.H.; Barry, J.; Forster, R.M. Decrease in water clarity of the southern and central North Sea during the 20th century. Glob. Chang. Biol. 2015, 21, 2206–2214. [Google Scholar] [CrossRef] [Green Version]
- Gattuso, J.; Gentili, B.; Duarte, C.M.; Kleypas, J.A.; Middelburg, J.J.; Antoine, D. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 2006, 3, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.R.; Kuring, N.; Yentsch, C.S. Global patterns of ocean transparency: Implications for the new production of the open ocean. J. Geophys. Res. 1988, 93, 6847–6856. [Google Scholar] [CrossRef]
- Guemas, V.; Doblasreyes, F.J.; Andreuburillo, I.; Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang. 2013, 3, 649–653. [Google Scholar] [CrossRef]
- He, X.Q.; Pan, D.L.; Bai, Y.; Wang, T.Y.; Chen, C.T.A.; Zhu, Q.K.; Hao, Z.Z.; Gong, F. Recent changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 2017, 143, 159–166. [Google Scholar] [CrossRef]
- Palinkas, C.M.; Halka, J.P.; Li, M.; Sanford, L.P.; Cheng, P. Sediment deposition from tropical storms in the upper Chesapeake Bay: Field observations and model simulations. Cont. Shelf Res. 2014, 86, 6–16. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Ohman, M.D.; Riviere, P. Optical effect on the nitracline in a coastal upwelling area. Limnol. Oceanogr. 2007, 52, 1179–1187. [Google Scholar] [CrossRef]
- Dupont, N.; Aksnes, D.L. Centennial changes in water clarity of the Baltic Sea and the North Sea. Estuar. Coast. Shelf Sci. 2013, 131, 282–289. [Google Scholar] [CrossRef] [Green Version]
Region | Temporal Mode | Chl-a | TSM | aCDOM(440) | PAR | SST | SSS | Wind Speed |
---|---|---|---|---|---|---|---|---|
(Units) | (mg·m−3) | (mg·L−1) | (m−1) | (E·m−2·d−1) | (°C) | (psu) | (m·s−1) | |
BNYS | PC 1 | −0.309 | −0.931 * | −0.930 * | 0.745 * | 0.896 * | −0.356 * | −0.737 * |
PC 2 | 0.005 | 0.098 | 0.163 * | −0.302 * | −0.264 * | 0.528 * | 0.307 * | |
PC 3 | −0.283 * | 0.078 | 0.021 | −0.219 * | 0.005 | −0.119 | 0.138 * | |
SYS | PC 1 | −0.606 * | −0.862 * | −0.875 * | 0.702 * | 0.838 * | −0.810 * | −0.681 * |
PC 2 | 0.061 | 0.150 | 0.142* | −0.321* | −0.236* | 0.235* | 0.183 | |
PC 3 | 0.139 * | −0.071 | −0.053 | 0.229 * | −0.171 | 0.186 | −0.243 * | |
BYS | PC 1 | −0.508 * | −0.910 * | −0.905 * | 0.728 * | 0.868 * | −0.778 * | −0.714 * |
PC 2 | 0.069 | 0.156 * | 0.145 * | −0.276 * | −0.201 * | 0.238 * | 0.188 * | |
PC 3 | 0.256 * | −0.080 | −0.068 | 0.323 * | −0.244 * | 0.304 * | −0.328 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yu, D.; Yang, Q.; Pan, S.; Gai, Y.; Cheng, W.; Liu, X.; Tang, S. Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations. Remote Sens. 2021, 13, 514. https://doi.org/10.3390/rs13030514
Zhou Y, Yu D, Yang Q, Pan S, Gai Y, Cheng W, Liu X, Tang S. Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations. Remote Sensing. 2021; 13(3):514. https://doi.org/10.3390/rs13030514
Chicago/Turabian StyleZhou, Yan, Dingfeng Yu, Qian Yang, Shunqi Pan, Yingying Gai, Wentao Cheng, Xiaoyan Liu, and Shilin Tang. 2021. "Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations" Remote Sensing 13, no. 3: 514. https://doi.org/10.3390/rs13030514
APA StyleZhou, Y., Yu, D., Yang, Q., Pan, S., Gai, Y., Cheng, W., Liu, X., & Tang, S. (2021). Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations. Remote Sensing, 13(3), 514. https://doi.org/10.3390/rs13030514