Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Novo Progresso Region
2.2. Datasets
- MODerate Resolution Imaging Spectroradiometer (MODIS) sensor onboard Aqua and Terra platforms.
- Advanced Very High-Resolution Radiometer (AVHRR) sensor onboard National Oceanic and Atmospheric Administration (NOAA) satellite.
- AVHRR-3 and Infrared Atmospheric Sounder Interferometer (IASI) sensors onboard Meteorological Operational (MetOp) satellite.
- Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard Suomi National Polar-orbiting Partnership (NPP) satellite.
- Advanced Baseline Imager (ABI) sensor, onboard GOES-R satellite.
- Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard Meteosat Second Generation (MSG) satellite.
2.3. Methodology
2.3.1. Deforestation and Fire Hotspots
2.3.2. Greenhouse Gas Emissions
3. Results and Discussion
3.1. Fire Hotspots in the Novo Progresso Region
3.2. Fire Hotspots and Deforestation in the Pará State
3.3. Gas and Particulate Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aragão, L.E.O.C.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 2014, 89, 913–931. [Google Scholar] [CrossRef] [PubMed]
- FAO. UM-REDD Programme. Available online: http://www.un-redd.org/how-we-work (accessed on 31 August 2020).
- Bustamante, M.M.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.O.; Aragão, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Chang. Biol. 2016, 22, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.C.; Veríssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Nepstad, D.; Carvalho, G.; Barros, A.C.; Alencar, A.; Capobianco, J.P.; Bishop, J.; Moutinho, P.; Lefebvre, P.; Silva, U.L., Jr.; Prins, E. Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manag. 2001, 154, 395–407. [Google Scholar] [CrossRef]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M.S.; Soares-Filho, B.S.; Merry, F.D.; Nepstad, D.C.; Rodrigues, H.; Almeida, O.T. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 2012, 29, 558–568. [Google Scholar] [CrossRef]
- Domingues, M.S.; Bermann, C. O arco de desflorestamento na Amazônia: Da pecuária à soja. Ambient. Soc. 2012, 15, 1–22. [Google Scholar] [CrossRef]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D.M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, e0176168. [Google Scholar] [CrossRef]
- Yanai, A.M.; Nogueira, E.M.; Graça, P.M.L.A.; Fearnside, P.M. Deforestation and carbon stock loss in Brazil’s Amazonian settlements. Environ. Manag. 2017, 59, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Farias, M.H.C.S.; Beltrão, N.E.S.; Cordeiro, Y.E.M.; Santos, C.A. Impact of rural settlements on the deforestation of the Amazon. Mercator 2018, 17, e17009. [Google Scholar] [CrossRef]
- Yanai, A.M.; Graça, P.M.L.A.; Escada, M.I.S.; Ziccardi, L.G.; Fearnside, P.M. Deforestation dynamics in Brazil´s Amazonian settlements: Effects of land-tenure concentration. J. Environ. Manag. 2020, 268, 110555. [Google Scholar] [CrossRef] [PubMed]
- INPE. Terrabrasilis. Available online: http://terrabrasilis.dpi.inpe.br/en/home-page/ (accessed on 30 August 2020).
- Azevedo-Ramos, C.; Moutinho, P. No man’s land in the Brazilian Amazon: Could undesignated public forests slow Amazon deforestation? Land Use Policy 2018, 73, 125–127. [Google Scholar] [CrossRef]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520–523. [Google Scholar] [CrossRef]
- West, T.A.; Börner, J.; Sills, E.O.; Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2020, 117, 24188–24194. [Google Scholar] [CrossRef]
- United Nations Climate Change. Copenhagen Climate Change Conference. Available online: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed on 19 November 2020).
- Law No. 12.727, 17 October 2012. Available online: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12727.htm (accessed on 19 November 2020).
- Sorrensen, C.L. Linking small holder land use and fire activity: Examining biomass burning in the Brazilian Lower Amazon. For. Ecol. Manag. 2000, 128, 11–25. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Silva, J.N. Selective logging in the Brazilian Amazon. Sci. 2005, 310, 480–482. [Google Scholar] [CrossRef]
- Broadbent, E.N.; Asner, G.P.; Keller, M.; Knapp, D.E.; Oliveira, P.J.C.; Silva, J.N. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 2008, 141, 1745–1757. [Google Scholar] [CrossRef]
- Barber, C.P.; Cochrane, M.A.; Souza, C.M., Jr.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Alencar, A.; Nepstad, D.; Diaz, M.C.V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: Area burned and committed carbon emissions. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Barni, P.E.; Pereira, V.B.; Manzi, A.O.; Barbosa, E.I. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon. Environ. Manag. 2015, 55, 1124–1138. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, T.F.; Escada, M.I.S.; Valeriano, D.M.; Hostert, P.; Gollnow, F.; Müller, H. Forest degradation associated with logging frontier expansion in the Amazon: The BR-163 region in southwestern Pará, Brazil. Earth Interact. 2016, 20, 1–26. [Google Scholar] [CrossRef]
- Arima, E.Y.; Walker, R.T.; Perz, S.G.; Caldas, M. Loggers and forest fragmentation: Behavioral models of road building in the Amazon basin. Ann. Am. Assoc. Geogr. 2005, 95, 525–541. [Google Scholar] [CrossRef]
- Souza, G.M.; Escada, M.I.S.; Capanema, V.P. Cicatrizes de queimadas e padrões de mudanças de uso e cobertura da terra no sudoeste do estado do Pará, Brasil. In Proceedings of the XVIII Simpósio Brasileiro de Sensoriamento Remoto (SBSR), Santos, Brazil, 28–31 May 2017; pp. 5760–5767. [Google Scholar]
- Butt, N.; Oliveira, P.A.; Costa, M.H. Evidence that deforestation affects the onset of the rainy season in Rondônia, Brazil. J. Geophys. Res. 2011, 116, 2–9. [Google Scholar] [CrossRef]
- Knox, R.; Bisht, G.; Wang, J.; Bras, R.L. Precipitation variability over the forest-to-nonforest transition in Southwestern Amazonia. J. Clim. 2011, 24, 2368–2377. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFRIES, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, A.J.; Van Der Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [Green Version]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.; Rammig, A. Deforestation effects on Amazon forest resilience. Geophys. Res. Lett. 2017, 44, 6182–6190. [Google Scholar] [CrossRef] [Green Version]
- Aragão, L.E.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Junior, C.H.S.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Graça, P.M.L.D.A.; Keizer, E.W.H.; Maldonado, F.D.; Barbosa, R.I.; Nogueira, E.M. Modelagem de desmatamento e emissões de gases de efeito estufa na região sob influência da rodovia Manaus-Porto Velho (BR-319). Rev. Bras. Meteorol. 2009, 24, 208–233. [Google Scholar] [CrossRef] [Green Version]
- Aragão, L.E.O.C.; Shimabukuro, Y.E. The incidence of fire in Amazonian forests with implications for REDD. Science 2010, 328, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Hosonuma, N.; Herold, M.; Sy, V.; de Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 2015, 42, 9546–9552. [Google Scholar] [CrossRef] [Green Version]
- Jusys, T. Fundamental causes and spatial heterogeneity of deforestation in Legal Amazon. Appl. Geogr. 2016, 75, 188–199. [Google Scholar] [CrossRef]
- Ruiz-Vásquez, M.; Arias, P.A.; Martínez, J.A.; Espinoza, J.C. Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Clim. Dyn. 2020, 54, 4169–4189. [Google Scholar] [CrossRef]
- Krieger-Filho, G.C.; Bufacchi, P.; Santos, J.C.; Veras, C.A.G.; Alvarado, E.C.; Mell, W.; Carvalho, J.A., Jr. Probability of surface fire spread in Brazilian rainforest fuels from outdoor experimental measurements. Eur. J. Forest Res. 2017, 136, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.A., Jr.; Veras, C.A.G.; Alvarado, E.C.; Sandberg, D.V.; Leite, S.J.; Gielow, R.; Rabelo, E.R.C.; Santos, J.C. Understory fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire. Int. J. Wildland Fire 2010, 19, 795–799. [Google Scholar] [CrossRef]
- Silva Júnior, C.H.L.; Aragão, L.E.O.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-induced fragmentation increases forest fire occurrence in central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.A., Jr.; Higuchi, N.; Araújo, T.M.; Santos, J.C. Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. J. Geophys. Res. 1998, 103, 13195–13199. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.A., Jr.; Costa, F.S.; Veras, C.A.G.; Sandberg, D.V.; Alvarado, E.C.; Gielow, R.; Serra, A.M.; Santos, J.C. Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil. J. Geophys. Res. 2001, 106, 17877–17887. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.R.; Veras, C.A.G.; Carvalho, J.A., Jr. Experimental investigation of smouldering in biomass. Biomass Bioenerg. 2002, 22, 283–294. [Google Scholar] [CrossRef]
- Rabelo, E.R.C.; Veras, C.A.G.; Carvalho, J.A., Jr.; Alvarado, E.C.; Sandberg, D.V.; Santos, J.C. Log smoldering after an Amazonian deforestation fire. Atmos. Environ. 2004, 38, 203–211. [Google Scholar] [CrossRef]
- Christian, T.J.; Yokelson, R.J.; Carvalho, J.A., Jr.; Griffith, D.W.T.; Alvarado, E.C.; Santos, J.C.; Soares Neto, T.G.; Veras, C.A.G.; Hao, W.M. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. J. Geophys. Res. Atmos. 2007, 112, 2156–2202. [Google Scholar] [CrossRef] [Green Version]
- Amaral, C.S.S., Jr.; Amaral, S.S.; Costa, M.A.M.; Soares Neto, T.G.; Veras, C.A.G.; Costa, F.S.; van Leeuwen, T.T.; Krieger Filho, G.C.; Tourigny, E.; Forti, M.C.; et al. CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia. Atmos. Environ. 2016, 135, 73–83. [Google Scholar] [CrossRef]
- Van Marle, M.J.E.; Field, R.D.; van der Werf, G.R.; Wagt, I.A.E.; Houghton, R.A.; Rizzo, L.V.; Artaxo, P.; Tsigaridis, K. Fire and deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cycles 2017, 31, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Soares Neto, T.G.; Carvalho, J.A., Jr.; Veras, C.A.G.; Alvarado, E.C.; Gielow, R.; Lincoln, E.N.; Cristian, T.J.; Yokelson, R.J.; Santos, J.C. Biomass consumption, CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmos. Environ. 2009, 43, 438–446. [Google Scholar] [CrossRef]
- Lima, A.; Silva, T.S.F.; de Feitas, R.M.; Adami, M.; Formaggio, A.R.; Shimabukuro, Y.E. Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Appl. Geogr. 2012, 34, 239–246. [Google Scholar] [CrossRef]
- Crowson, M.; Ron, H.; Björn, W. Mapping land cover change in northern Brazil with limited training data. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 202–214. [Google Scholar] [CrossRef]
- Jakimow, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2018, 205, 453–468. [Google Scholar] [CrossRef]
- Müller, H.; Griffiths, P.; Hostert, P. Long-term deforestation dynamics in the Brazilian Amazon—Uncovering historic frontier development along the Cuiabá–Santarém highway. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 61–69. [Google Scholar] [CrossRef]
- ESA. EO Browser. Available online: https://apps.sentinel-hub.com/eo-browser/ (accessed on 20 November 2020).
- Assis, L.F.F.G.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. GeoInf. 2019, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- INPE. Monitoramento de Queimadas e Incêndios por Satélite em Tempo Quase-Real. Available online: http://queimadas.dgi.inpe.br/queimadas/portal (accessed on 31 August 2020).
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Biase, V.; Laneve, G. Geostationary sensor based forest fire detection and monitoring: An improved version of the SFIDE algorithm. Remote Sens. 2018, 10, 741. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. Atmos. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Silva, C.A.; Santilli, G.; Sano, E.E.; Rodrigues, S.W.P. Análise qualitativa do desmatamento na Floresta Amazônica a partir de sensores SAR, óptico e termal. Anu. Inst. Geociênc. 2019, 42, 18–29. [Google Scholar] [CrossRef]
- Santana, N.C.; Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F. Burned-area detection in Amazonian environments using standardized time series per pixel in MODIS data. Remote Sens. 2018, 10, 1904. [Google Scholar] [CrossRef] [Green Version]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s forest code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.S.; Fearnside, P.M.; Graça, P.M.L.A.; Brown, I.F.; Alencar, A.; Melo, A.W.F. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Pulselli, R.M.; Romano, P.; Marchi, M.; Bastianoni, S. Carbon emission intensity and areal empower density: Combining two systemic indicators to inform the design and planning of sustainable energy landscapes. Chapter 19. In Sustainable Energy Landscapes: Designing, Planning, and Development; Stremke, S., van den Dobbelsteen, A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 385–406. [Google Scholar]
- Smith, C.C.; Espírito-Santo, F.D.B.; Healey, J.R.; Young, P.J.; Lennox, G.D.; Ferreira, J.; Barlow, J. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. 2020, 26, 7006–7020. [Google Scholar] [CrossRef] [PubMed]
- SEEG—Sistema de Estimativa de Emissão de Gases do Efeito Estufa. Available online: http://seeg.eco.br (accessed on 4 January 2021).
- Laneve, G.; Cadau, E.G.; Santilli, G. Estimation of the burned biomass based on the quasi-continuous MSG/SEVIRI Earth observation system. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009), Cape Town, South Africa, 12–19 July 2009. [Google Scholar]
Parameter | Reference Value | Reference Area |
---|---|---|
Fresh biomass (ton ha−1) | 512 | Novo Progresso |
Fresh biomass (ton ha−1) | 570 | Pará State |
Fresh biomass (ton ha−1) | 580 | Brazilian Amazon |
Emission factor CH4 (kg ton−1 (db)) * | 9.2 | Brazilian Amazon |
Emission factor CO (kg ton−1 (db)) | 111.3 | Brazilian Amazon |
Emission factor CO2 (kg ton−1 (db)) | 1599 | Brazilian Amazon |
Emission factor NMHC (kg ton−1 (db)) | 5.57 | Brazilian Amazon |
Emission factor PM2.5 (kg ton−1 (db)) | 4.84 | Brazilian Amazon |
Fresh biomass humidity (%) | 42 | Brazilian Amazon |
Combustion efficiency (%) | 50 | Brazilian Amazon |
PY | Forest Area (km2) | Accumulated Deforested Area (km2) | Annual Deforested Area (km2) | Fire Hotspots in Forest | Fire Hotspots in Deforested Area |
---|---|---|---|---|---|
2006–2007 | 31,574.5 | 5230.9 | 2067 | 9702 | |
2007–2008 | 31,153.6 | 5651.9 | 421.0 | 2012 | 9870 |
2008–2009 | 30,543.9 | 6261.5 | 609.6 | 1345 | 7753 |
2009–2010 | 30,406.7 | 6398.7 | 137.2 | 1035 | 5060 |
2010–2011 | 30,281.5 | 6524.0 | 125.3 | 1675 | 9573 |
2011–2012 | 30,096.5 | 6708.9 | 184.9 | 572 | 3621 |
2012–2013 | 29,704.1 | 7101.3 | 392.4 | 4536 | 36,350 |
2013–2014 | 29,437.9 | 7367.6 | 266.3 | 457 | 10,186 |
2014–2015 | 29,200.6 | 7604.8 | 237.3 | 3243 | 34,817 |
2015–2016 | 29,021.9 | 7783.5 | 178.7 | 2085 | 32,196 |
2016–2017 | 28,938.4 | 7867.1 | 83.6 | 1212 | 19,572 |
2017–2018 | 28,655.2 | 8150.3 | 283.2 | 4338 | 42,723 |
2018–2019 | 28,323.7 | 8481.8 | 331.5 | 2148 | 37,236 |
PY | Total Annual Fire Hotspots | Accumulated Deforested Area (%) | Annual Deforested Area (km2) |
---|---|---|---|
2006–2007 | 146,863 | 9.35 | 5526 |
2007–2008 | 202,922 | 9.80 | 5607 |
2008–2009 | 119,234 | 10.14 | 4281 |
2009–2010 | 113,174 | 10.44 | 3770 |
2010–2011 | 174,394 | 10.69 | 3008 |
2011–2012 | 80,401 | 10.83 | 1741 |
2012–2013 | 372,391 | 11.01 | 2346 |
2013–2014 | 181,458 | 11.17 | 1887 |
2014–2015 | 324,024 | 11.34 | 2153 |
2015–2016 | 560,591 | 11.58 | 2992 |
2016–2017 | 276,283 | 11.77 | 2433 |
2017–2018 | 692,498 | 11.99 | 2744 |
2018–2019 | 351,001 | 12.30 | 3862 |
Parameter (Units) | Novo Progresso Region | Pará State | Brazilian Amazon |
---|---|---|---|
Deforested area (ha) | 33.15 × 103 | 446.30 × 103 | 1.09 × 106 |
Fresh biomass (Mton ha−1) | 5.12 × 10−4 | 5.70 × 10−4 | 5.80 × 10−4 |
Total Biomass (Mton) | 16.97 | 254.2 | 632.4 |
CH4 emitted (Mton) | 0.047 | 0.67 | 1.7 |
CO2 emitted (Mton) | 7.86 | 109.2 | 293.3 |
Total CO2 (Mton) | 8.81 | 132.1 | 328.7 |
CO emitted (Mton) | 0.55 | 8.3 | 20.41 |
NMHC emitted (Mton) | 0.027 | 0.41 | 1.02 |
PM2.5 emitted (Mton) | 0.024 | 0.36 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.A.; Santilli, G.; Sano, E.E.; Laneve, G. Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. Remote Sens. 2021, 13, 376. https://doi.org/10.3390/rs13030376
Silva CA, Santilli G, Sano EE, Laneve G. Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. Remote Sensing. 2021; 13(3):376. https://doi.org/10.3390/rs13030376
Chicago/Turabian StyleSilva, Claudia Arantes, Giancarlo Santilli, Edson Eyji Sano, and Giovanni Laneve. 2021. "Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon" Remote Sensing 13, no. 3: 376. https://doi.org/10.3390/rs13030376
APA StyleSilva, C. A., Santilli, G., Sano, E. E., & Laneve, G. (2021). Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. Remote Sensing, 13(3), 376. https://doi.org/10.3390/rs13030376