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Abstract: Fires associated with the expansion of cattle ranching and agriculture have become a
problem in the Amazon biome, causing severe environmental damages. Remote sensing techniques
have been widely used in fire monitoring on the extensive Amazon forest, but accurate automated
fire detection needs improvements. The popular Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD64 product still has high omission errors in the region. This research aimed to evaluate
MODIS time series spectral indices for mapping burned areas in the municipality of Novo Progresso
(State of Pará) and to determine their accuracy in the different types of land use/land cover during the
period 2000–2014. The burned area mapping from 8-day composite products, compared the following
data: near-infrared (NIR) band; spectral indices (Burnt Area Index (BAIM), Global Environmental
Monitoring Index (GEMI), Mid Infrared Burn Index (MIRBI), Normalized Burn Ratio (NBR), variation
of Normalized Burn Ratio (NBR2), and Normalized Difference Vegetation Index (NDVI)); and the
seasonal difference of spectral indices. Moreover, we compared the time series normalization methods
per pixel (zero-mean normalization and Z-score) and the seasonal difference between consecutive
years. Threshold-value determination for the fire occurrences was obtained from the comparison of
MODIS series with visual image classification of Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and Operational Land Imager (OLI) data using the overall accuracy. The best
result considered the following factors: NIR band and zero-mean normalization, obtaining the overall
accuracy of 98.99%, commission errors of 32.41%, and omission errors of 31.64%. The proposed
method presented better results in burned area detection in the natural fields (Campinarana) with an
overall accuracy value of 99.25%, commission errors of 9.71%, and omission errors of 27.60%, as well
as pasture, with overall accuracy value of 99.19%, commission errors of 27.60%, and omission errors
of 34.76%. Forest areas had a lower accuracy, with an overall accuracy of 98.62%, commission errors
of 23.40%, and omission errors of 49.62%. The best performance of the burned area detection in the
pastures is relevant because the deforested areas are responsible for more than 70% of fire events.
The results of the proposed method were better than the burned area products (MCD45, MCD64,
and FIRE-CCI), but still presented limitations in the identification of burn events in the savanna
formations and secondary vegetation.
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1. Introduction

Human disturbance is the primary cause of burned events in the Amazon Forest, mainly in areas
of deforestation, agriculture, and pastures [1–4]. Anthropogenic fire from farming and livestock
usually escapes into neighboring forest areas, resulting in large-scale fire events [5]. Therefore,
land-use determines the burning patterns of the Amazon forest, where areas with intense deforestation,
fragmentation, and the presence of highways have a higher number of fires, whilst Conservation Units
and Indigenous Reserves are essential barriers [6–10]. The Amazon forest has a high vulnerability
to fire incidences due to the following factors: most species do not tolerate recurrent fire events,
floristic and structural changes, and organic matter incineration that is essential for the maintenance of
ecological processes [11–13].

The concentration of Amazon forest fires is along an area called the arc of deforestation, which
presents an intensification of anthropogenic actions along the eastern and southern forest edges.
Compared with the central zones of the forests, the arc of deforestation has lower biomass and drier
climate resulting in larger burnings [14,15]. During severe drought periods, there is an increase in
tree mortality on forest edges and the accumulation of dry leaves [16,17], which favor fire events
mainly in degraded forests [18–20]. Models of climate change in the Amazon rainforest provide for the
expansion of fires due to more frequent droughts and land use intensification [4,21].

In the monitoring of the Amazon Forest (5.5 million km2), the use of remote sensing data is
necessary due to its synoptic view, rapidity, and high cost-effectiveness. The major impediment to
optical remote sensing in the Amazon region is the high atmospheric interference from cloud cover and
aerosols [22]. Therefore, high temporal resolution optical sensors are essential for the monitoring of
Amazon forest fires, increasing the possibility of acquiring good quality images without atmospheric
interference [23–25]. Among the high temporal resolution sensors, the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor has been prominent in the mapping of fires in the different
terrestrial biomes [26–28], offering global scale products of active fires [29,30] and burned areas [26,29].
Active fire detection captures the energy emission using thermal infrared imagery (3.6–12 µm range),
and provides information only of burning pixels during the passage of the satellite, not allowing the
burned area quantification [26,29,31]. In contrast, the post-fire mapping evidenced by ash, coal, and
vegetation changes enable obtaining of the perimeter, area, and an estimate of damage caused by
forest fires. Thus burned area products (MODIS-MCD45/MCD64) were extensively used in diversity
studies about ecosystem structure change and biomass burning emissions [24,32–34]. Padilla et al. [35]
performed a validation of the MCD45 and MCD64 products for several terrestrial biomes, obtaining
estimated commission errors rates of 46% and 42%, and omission error rates of 72% and 68% for
MCD45 and MCD64, respectively. Therefore, the burned area product tends to underestimate the
extent of the burned area, where the omission errors were higher than commission errors [35–38].
Cardozo et al. [39] showed that the MODIS burned area product (MCD45) in the Amazon region at
different dates, presents values higher than 90% of omission errors, which corresponds to low accuracy
and a need for the development of new algorithms adjusted for this region.

Different remote sensing methods have been proposed for the burned area mapping. The most
widely used processing using bi-temporal images combines two algebraic operations: (a) Spectral
index calculation, where the most commonly used are the Normalized Burn Ratio (NBR) [40] and
Normalized Difference Vegetation Index (NDVI) [41]; and (b) Seasonal differences between the pre-
and post-burned indices, such as dNDVI [42] and dNBR [40]. Other indices have been proposed such
as the Burned Area Index Modified (BAIM) [43], Global Environmental Monitoring Index (GEMI) [44],
Mid-Infrared Burned Index (MIRBI) [45], and the variation of Normalized Burn Ratio (NBR2) [46].

The adaptation of the index differentiation method to long-term MODIS time series [47,48]
considers the entire time series of one year with its antecedent, generating an image set rather than just
a single difference image from a custom selection. However, the automatic difference over the time
series shows a significant increase in signal-to-noise ratio, with respect to the bi-temporal images that
were pre-defined by the analyst. Therefore, the application of the differencing method in continuous
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time series requires methodological improvements [47,48]. Lhermitte et al. [49] tried to solve this
problem by selecting control pixels surrounding the unburned area based on time series similarity.
This approach considers the spatial context (neighboring pixels) to minimize the external influences
and phenological variations [50]. However, this method has severe limitations for complete automation,
requiring supervision for not including neighboring pixels with different characteristics as compared
to the analyzed pixel.

A proposed alternative is the use of normalized time series using the Z-score (mean zero and
standard deviation equal to 1) or means (mean zero), which allow highlighting of the burned areas
without changing the signal-to-noise ratio [47]. The normalization procedure is very promising because
it does not require neighboring control pixels, considering only the time series of the pixel. This method
is different from that proposed by the research of Diáz-Delgado et al. [50] and Lhermitte et al. [49],
because it is fast and simple data processing restricted to the pixel, which generates an image that
emphasizes the burning points in different environments.

The present paper aims to evaluate and compare different methods of burned area mapping
from MODIS time series (BAIM, GEMI, MIRBI, NBR, NBR2, NDVI, and the near-infrared band) and
normalized time series per pixel (Mean and Z-Score) in different land covers in the municipality of
Novo Progresso, belonging to the Amazon region. This research also evaluates the spatial and temporal
distribution of fire in different land use types.

2. Study Area

The study area is the municipality of Novo Progresso and surroundings (74,552.1518 km2),
State of Pará, Southeast Brazilian Amazon (Figure 1). The climate is Humid Equatorial with annual
precipitation ranging from 2050 mm to 2650 mm and average temperature above 25 ◦C [51,52].
The rainy season is from November to May and the dry season, from June to October, when most fire
events occur [53].
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The predominant vegetation is classified as Open Ombrophilous Sub-Montane Forest, but it also
contains areas of Forest Savanna and Submontane Semideciduous Seasonal Forest [55]. This region
has been inhabited by indigenous populations, currently restricted to the Baú and Menkragnoti
Indigenous Reserves [60]. The construction of the federal highway BR-163 in the 1980s brought an
intense migratory flow that increased the soybean cultivation, livestock, and infrastructure projects [61].
The Conservation Units curb deforestation growth within Integral Protection Units (Rio Novo National
Park, Cristalino State Park, Nascentes da Serra do Cachimbo Biological Reserve, and Crystal Private
Reserve Natural Heritage) and Sustainable Use Units (Jamanxim and Altamira National Forests, Iriri
State Forest and Tapajós Environmental Protection Area) [56]. The Agrarian Reform Settlements and
Military Areas complement the federal land types of the region [58,59]. The leading causes of fire are
deforestation and pasture maintenance [2,9].

3. Materials and Methods

3.1. Methodology Flowchart

The methodology adopted the following steps, including MODIS 8-day composites data
acquisition (MOD09A1 and MOD09Q1), calculation of spectral indices, filtering, time series
normalization, burned area mapping, and validation (Figure 2). The research calculated seven spectral
indices and applied in each index two types of time series normalization per pixel (Z-score and
zero-mean) and the seasonal difference method, computing a total of 21 different procedures. Finally,
we compared the burned areas by the different MODIS image processing with the following data:
Visual interpretation of Landsat images (Thematic Mapper (TM)/ Enhanced Thematic Mapper Plus
(ETM+)/Operational Land Imager (OLI)) and burned area products (MCD45 [31], MCD64 [26], and
Fire CCI) [62,63].
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3.2. MODIS Data

The MODIS sensor aboard the Terra and Aqua satellites was developed by the National
Aeronautics and Space Administration (NASA) to provide continuous observations of the Earth’s
surface [64]. This sensor has 36 spectral bands ranging from 0.4 µm to 14.4 µm at three spatial
resolutions (250, 500 m, and 1 km) according to the band. We used the following MODIS products:
(a) 8-day composite surface reflectance at 250 and 500-m resolution (MOD09A1 and MOD09Q1); (b)
daily burned area at 500-m resolution (MCD45A1) [31]; (c) daily burned area at 500-m resolution
(MCD64A1) [26], and (d) monthly burned area product at 300-m resolution derived from both MODIS
and Medium Resolution Imaging Spectrometer (MERIS) sensors (FIRE CCI) [62,63]. The data download
sites were the NASA Land Data Products and Services website (https://search.earthdata.nasa.gov/)
and from the European Space Agency (ESA) Fire CCI website (http://www.esa-fire-cci.org/).

MODIS surface reflectance product is composed by bands 1–2 (0.6 µm–0.9 µm) at 250-m spatial
resolution and bands 3–7 (0.4 µm–2.1 µm) at 500-m spatial resolution [65]. These images are available
as daily data and 8-day composite product that select the best observation within the time interval
and eliminate the presence of artifacts such as cloud or cloud shadow. The traditional temporal
composite based on the maximization of values can cause loss of information of burned areas, which
are characterized by low albedo [66]. In contrast, daily images have more noise and atmospheric effects
that can also lead to the insertion of invalid information.

The acquisition of MODIS data covered the period 2000–2014, resulting in 683 8-day composite
images. We discarded the poor-quality pixels with (a) cloud coverage, (b) related to the high and
medium aerosol classes, and (c) relative to frontal scattering and with zenith angles greater than 60◦,
because of the influence of the spectral mixing of the targets with their shadows, especially in the
near-infrared (NIR) band [66,67]. We converted the MODIS images from native sinusoidal projection
to the Universal Transverse Mercator (UTM, WGS 84 ellipsoid) projection. Spectral bands with the
spatial resolution of 500 m were resampled at 250 m using the nearest neighbor interpolation method
to make the data compatible.

3.3. Spectral Indices

The data compared to the fire detection were: (a) Only the NIR band (band 2); (b) NDVI, NBR,
NBR2, BAIM, GEMI, and MIRBI index; and (c) temporal differencing (∆) (Table 1). The NIR band
allows a high separation of the burned areas compared to other spectral channels [68,69]. The NDVI
uses the RED and NIR bands, and is widely used to highlight vegetation changes [70]. The NBR
index developed to highlight burned areas adopts the normalized difference between the NIR and
Short Wave Infrared (SWIR) [40]. The NBR2 and MIRBI indices are variations of the NBR and NDVI
indices, considering the SWIR1 and SWIR channels to highlight the burn areas [45,46]. The BAIM index
maximizes the spectral deviation between the burned area and other land covers from the NIR and
SWIR channels [43]. The GEMI index was determined to evaluate the vegetation conditions, reducing
the content of both the NIR and RED channels [45].

Seasonal differencing is a change detection method with extensive use in the analysis of the
severity of a fire [47,48,71–73]. This method consists of subtracting the values of spectral indices or
bands acquired before and after a fire event (pre-fire minus post-fire) to emphasize the changes related
to the fire. The advantage of the method is the possibility of defining the fire severity, apart from
indicating the areas with vegetation regeneration [46]. Despite the proven utility of the technique
in many different environments, there are few details about its application in the Amazon region or
other areas of tropical forests. Seasonal differencing techniques have been used with different spectral
indices including: ∆NBR [48,74], ∆NDVI [75], ∆NBR2 [76], ∆BAIM [74], ∆GEMI [77], and ∆MIRBI [78].

https://search.earthdata.nasa.gov/
http://www.esa-fire-cci.org/
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Table 1. Spectral indices to highlight the burned areas adopted in this research.

Index Equation Bibliographic Reference

NBR/∆NBR NBR = NIR−SWIR2
NIR+SWIR2 [40,79]

NDVI/∆NDVI NDVI = NIR−RED
NIR+RED [41]

NBR2/∆NBR2 NBR2 = SWIR1−SWIR2
SWIR1+SWIR2 [46]

BAIM/∆BAIM BAIM = 1
(0.05−NIR)2+(0.2−SWIR2)2 [43]

GEMI/∆GEMI GEMI = n(1 − 0.25 n)− RED−0.125
1−RED [44]

MIRBI/∆MIRBI MIRBI = (10 ∗ SWIR2)− (9.8 ∗ SWIR1) + 2 [45]
∆ pre f ire − post f ire

Notes: In GEMI n = 2(NIR2−RED2)+1.5NIR+0.5RED
NIR+RED+0.5 .

3.4. Time Series Standardization per Pixel

The burned areas show differences in spectral behavior according to the vegetation type and
the period after the fire [80]. In the Amazon, burning occurs mostly in pasture and agriculture,
but there are significant impacts on forest and savanna areas [81,82]. Therefore, the detection of
areas burned by remote sensing should be adaptable for environmental differences. The normalized
time series allows to equate the behavior of distinct vegetation and highlight the burned areas [83].
The normalization procedures consider the temporal data per pixel. The two evaluated methods
of time series normalization were: Zero-mean (mean equal to 0) and Z-score (mean equal to 0 and
standard deviation equal to 1) expressed by the following formulations:

Zero − mean = xt − µ (1)

Z − score =
xt − µ

σ
(2)

where x is the pixel value, t is the time, µ is the mean of the remote sensing data over time (t) for a
pixel, and σ is its standard deviation. Therefore, the two normalization methods present negative
values when the remote sensing values are smaller than the temporal mean and positive values when
they are above. The Z-score approach was successful for burned area detection in regions of savanna
vegetation [83]. Normalization makes the burned-area features of different environments compatible
and eliminates confusion with low-albedo targets (e.g., water). As an example, we compared the
MODIS NIR temporal series of water bodies with burned areas in natural fields (Campinarana),
grasslands, and wooded savannas, showing an overlap of values and the inability to distinguish
different targets by a single threshold value (Figure 3a). The time series normalized by the mean
allows separating the burned area and water bodies by a single threshold (Figure 3b). Moreover, the
Ombrophilous forests have reflectance values in the NIR range that are higher than the seasonal forests
and forested savannas, which remain higher even after a fire event and prevent the use of a single
threshold for the detection of burning among these types of vegetation (Figure 4a). The method of
time series normalization equalizes the fire points. Thus, forest time series normalized by the mean
decrease false fire events significantly, but the omission of some points occurs mainly in the seasonal
forest and forested savanna (Figure 4b).



Remote Sens. 2018, 10, 1904 7 of 27
Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 28 

 

 
Figure 3. Comparison of MODIS near-infrared time series for different burned and unburned targets 
within Campinarana, Pasture, Water and Wooded Savanna: (a) without normalization; (b) with zero-
mean normalization. Missing values are masked pixels. 

 
Figure 4. Comparison of MODIS near-infrared time series for different burned and unburned targets 
within Seasonal Forest, Forested Savanna, and Ombrophilous Forest: (a) without normalization; (b) 
with zero-mean normalization. Missing values are masked pixels. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2005 2006 2008 2010

N
IR

 R
ef

le
ct

an
ce

Years

(a)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

2005 2006 2008 2010

N
or

m
al

ize
d 

N
IR

 R
ef

le
ct

an
ce

Years

Campinarana Pasture Water Wooded Savanna Threshold

(b)

Burn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2005 2006 2008 2010

N
IR

 R
ef

le
ct

an
ce

Years

(a)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

2005 2006 2008 2010

N
or

m
al

ize
d 

 N
IR

 R
ef

le
ct

an
ce

Years
Seasonal Forest Forested Savanna Ombrophilous Forest Threshold

(b)

Burn
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In addition to the relevant results in the time dimension, normalization per pixel also causes
a significant digital enhancement of the burned areas in the spatial dimension. In images without
normalization, the savanna and watercourses have similar values to the burned areas, being confused in
the application of a threshold value (Figure 5a). The normalized image allows an apparent distinction
between the burned areas compared to water bodies, since they have significantly lower values
(Figure 5b).

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 28 

 

In addition to the relevant results in the time dimension, normalization per pixel also causes a 
significant digital enhancement of the burned areas in the spatial dimension. In images without 
normalization, the savanna and watercourses have similar values to the burned areas, being confused 
in the application of a threshold value (Figure 5a). The normalized image allows an apparent 
distinction between the burned areas compared to water bodies, since they have significantly lower 
values (Figure 5b). 

 
Figure 5. Exemplification of digital enhancement using normalized time series of the near-infrared 
band. (A) without normalization; (B) with zero-mean normalization. The zero-mean normalization 
allows the distinction between burned and unburned targets. 

3.5. Seasonal Differencing 

The seasonal difference is one of the most commonly used methods for the detection of burned 
areas, but studies focus on bi-temporal analysis based on preselected images. Therefore, most studies 
adopt a specific fire event, where selection by the analyst of two images near the birthday dates 
considers the low presence of clouds or noises. Few studies detect areas burned by seasonal 
differences in long-term time series of satellite images, using tens or hundreds of images. The 
seasonal difference algorithms in long time series assume fixed time intervals and present a certain 
amount of random noise, since it is impossible to get multiple cloudless and noise-free images on 
birthday dates in different years [47–49,83]. Thus, some proposals have been made to mitigate 
interference, considering spatial and temporal dimensions. A spatial approach involves selecting 
control pixels for pre-fire data by examining the contextual neighborhood around the focal pixel and 

Figure 5. Exemplification of digital enhancement using normalized time series of the near-infrared
band. (A) without normalization; (B) with zero-mean normalization. The zero-mean normalization
allows the distinction between burned and unburned targets.

3.5. Seasonal Differencing

The seasonal difference is one of the most commonly used methods for the detection of burned
areas, but studies focus on bi-temporal analysis based on preselected images. Therefore, most studies
adopt a specific fire event, where selection by the analyst of two images near the birthday dates
considers the low presence of clouds or noises. Few studies detect areas burned by seasonal differences
in long-term time series of satellite images, using tens or hundreds of images. The seasonal difference
algorithms in long time series assume fixed time intervals and present a certain amount of random
noise, since it is impossible to get multiple cloudless and noise-free images on birthday dates in
different years [47–49,83]. Thus, some proposals have been made to mitigate interference, considering
spatial and temporal dimensions. A spatial approach involves selecting control pixels for pre-fire data
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by examining the contextual neighborhood around the focal pixel and averaging two or more similar
pixels within spatial windows [84,85]. A temporal approach involves the use of the average of the
birthday data of the complete time series rather than the simple data from the previous year [47,83].

In this research, the seasonal differencing considered two strategies: (a) Automatic method with a
fixed annual interval, where a pre-fire image was subtracted from the post-fire with a range of one
year exactly; and (b) Method to select a good quality image closer to the anniversary date when the
previous year’s image had poor quality or cloud coverage. The latter option may have non-fixed
subtraction intervals, performing the temporal search for a better-quality pixel within a time window.

3.6. Landsat Reference Data and Burned Area Mapping

The threshold definition for separation between burned and unburned areas used the method
developed by Carvalho Júnior et al. [83]. This procedure compares a reference map of the burned areas,
previously obtained from an image with better spatial resolution, and the burned areas acquired by a
sequence of thresholds from a spectral band or spectral index. Thus, the method generates an overall
accuracy curve from the comparison of the reference map and the classifications using threshold
values (Figure 6). The fire detection in other time series images used the threshold value with the
best overall accuracy. In this research, the definition of the best threshold used seven reference maps
of the burned area produced by the visual interpretation of the Landsat TM and ETM+ images on
the following dates: 15/08/2001, 19/09/2002, 28/07/2003, 30/07/2004, 03/09/2005, 10/08/2008,
and 01/09/2010 (Table 2, Figure 7). The acquisition of Landsat data came from the United States
Geological Survey (USGS) website (https://earthexplorer.usgs.gov/). The visual image interpretation
methodology [35,86] used at least two different dates to identify burned areas and exclude false
positives. The fires in the region occur mainly during the dry season, where there is more availability
of cloudless images and Landsat/MODIS pairs with matching dates, avoiding the possible omission
of fires due to different dates.
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Figure 6. Example of the overall accuracy curve between the burned areas from the visual interpretation
of Landsat-5 TM image (30/07/2004) and the results from the classifications using different thresholds
in the MODIS near-infrared band. The optimal threshold is 0.215 in the band 2 image (overall accuracy
of 98.56%).

The tests covered an area corresponding to 20% of the study area (14,689.638 km2), containing the
highest rate of deforestation and burning in the analyzed image set. The images included three classes:
burned area, unburned area, and low-quality pixels (clouds and noise) from the quality mask available
with Landsat images on the EarthExplorer site (Table 2). The seasonal difference with the fixed interval
presupposes the image selection with exactly one previous year, being able to have a high percentage

https://earthexplorer.usgs.gov/
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of pixels with atmospheric interference. The seasonal difference with the closest high-quality image
selects data with the lowest cloud coverage within a user-stipulated period.

Table 2. Low-quality pixel percentage of Landsat scenes used to define the threshold value.

Image
Date Sensor

Percentage of Low-Quality Pixels

Normalization
Method

Seasonal Difference
(Fixed Interval)

Seasonal Difference (Closest
High-Quality Image)

15/08/2001 ETM+ 34% - -

19/09/2002 ETM+ 25% 77% 19%

28/07/2003 TM 13% 82% 24%

30/07/2004 TM 44% 51% 13%

03/09/2005 TM 26% 51% 12%

10/08/2008 TM 47% 57% 45%

01/09/2010 TM 7% 49% 22%
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We applied the average of the seven best thresholds in the complete time series of 14 years,
generating a time series of burned area mask. The best threshold definition uses the equation x ≤ y,
where x is the value of the burned pixel and y is the threshold value for band 2, GEMI, NBR, NBR2,
NDVI, ∆BAIM, and ∆MIRBI, while the equation x ≥ y for BAIM, MIRBI, ∆Band2, ∆GEMI, ∆NBR,
∆NBR2, and ∆NDVI.

The overlap of the same-year polygons resulted in burned areas during the year. We used an
algorithm that eliminated the burned areas that did not occur on at least two consecutive dates (8-day),
which were considered noises because the ash of burns in savanna and forest requires a longer time to
be extinguished [69,87,88]. The errors of areas burned in water bodies were corrected from the land
use/land cover mapping produced by the Amazon Surveillance System (SIVAM) [55].
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3.7. Dataset Comparison and Accuracy Analysis

Accuracy analysis used visual interpretations of independent areas of those adopted in the
determination of optimal threshold values (Figure 8). The methodology assumed was proposed by
Padilla et al. [89], which considers the confusion matrices between the classification of MODIS and
Landsat images (Table 3) and its indices: Overall Accuracy (OA) (Equation (3)), Commission Errors
(CE) (Equation (4)), and Omission Errors (OE) (Equation (5)) [90].
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Table 3. Confusion matrix.

True Condition (Landsat Classification)

Burned Area Unburned Area

Predicted Condition
(MODIS Classification)

Burned area True Positive (TP) False Positive (FP)
Unburned area False Negative (FN) True Negative (TN)

OA =
∑ TP + ∑ TN

Total Population
∗ 100 (3)

CE =
∑ FP

∑ FP + ∑ TP
∗ 100 (4)

OE =
∑ FN

∑ FN + ∑ TP
∗ 100 (5)

We also used the Dice coefficient (DC), described in Reference [91], which combines CE and OE
into a single category according to the below Equation, as in Reference [38]:

DC =
2 ∗ a

2 ∗ a + b + c
(6)

where “a” refers to the burned area mapped correctly in both methods, “b” the commission errors, and
“c” the omission errors. Given DC is a measure of aggregate precision, it obscures differences in the
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individual measurements of CE and OE. Therefore, CB has limitations if CE and OE are not equally
significant, in which case the accuracy analysis should be directed to the largest specific error [38].

The reference image corresponded to about 25% of the study area (19,486.3664 km2) obtained
from the visual interpretation of TM, ETM+, and OLI images on the following dates: 10/10/2001,
10/05/2002, 09/22/2003, 10/02/2004, 09/19/2005, 09/22/2006, 09/09/2007, 09/27/2008, 09/30/2009,
09/09/2010, 09/12/2011, 09/30/2012, 10/03/2013, and 09/28/2014. In 2012, we used Landsat 7 ETM+
images (even with the presence of errors) because it was the only sensor in operation of the Landsat
program [92], the scan-line issues were masked and disregarded in that year’s accuracy analysis.

The non-parametric McNemar’s test [93] assessed the independence of the results obtained
by pair-wise comparisons of the classifications [94]. The McNemar test calculates the chi-square
distribution (x2) considering the matrix elements of Table 4 in the following Equation:

x2 =
( f12 − f21)

2

f12 + f21
(7)

Table 4. McNemar test between two classifications.

Classification 2

Correct Incorrect Total

Classification 1

Correct f11 f12 f11 + f12

Incorrect f21 f22 f21 + f22

Total f11 + f21 f12 + f22 f11 + f12 + f21 + f22

The McNemar test analysis considered 4000 random samples for each year between 2001 and 2014.
The significance assessment compared the value of x2 obtained with the tabulated value, indicating
the null hypothesis when the x2 value was less than 5% of significance (3.841), or rejection of the null
hypothesis when the x2 value was higher.

The validation of the MCD45 [36], MCD64 [26], and Fire CCI [62,63] products used the same data
set to facilitate comparison with the proposed methodologies. The MCD45 uses an algorithm that
identifies burned areas daily, eliminating false events such as cloud shadows. The MCD64 identifies
persistent changes in the time series of vegetation indices and includes the localization of active fire
to define boundary values for the burned area and unburned area. The Fire CCI product combines
active fire pixel information and spectral changes of the MERIS sensor time series. These products are
available in monthly data with 500 m of resolution, where each pixel can indicate the exact day of the
burn on Julian days (1–365), unburned area, cloud area, or water area [31,62].

3.8. Analysis of the Spatial Relationships between Land Use/Land Cover Classes and Burned Area

Land use dynamics is a crucial factor to understand the spatial pattern of fires. In this spatial
analysis, we used the land use/land cover mapping produced by the Amazon Surveillance System
(SIVAM) [55] and deforestation provided by the National Institute for Space Research by Project for
Monitoring Deforestation in the Legal Amazon (PRODES) [54]. In the SIVAM mapping, land use/land
cover classes considered those established by the Brazilian Institute of Geography and Statistics [55]:
Ombrophylous Forests, Seasonal Forests, Campinarana, Savanna, Secondary Vegetation, Annual
Deforestation, and Water. As the PRODES methodology considers one year beginning in August, we
used Landsat images to update deforestation by the end of each year from 2001 to 2014, resulting
in annual land cover maps. The intersection of information allowed us to evaluate the interactions
between deforestation, land use, and fire. Moreover, we assessed the influence of the BR 163 highway
on the occurrence of fires, calculating the percentage of burned area in a buffer zone with distance
intervals of 20 km from the highway.
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4. Results

4.1. Determination of the Best Threshold Value

The use of both the seasonal differencing and the zero-mean normalization improves the overall
accuracy of the original images (Table 5). The zero-mean normalization obtained better precision
results (overall accuracy) than the Z-score normalization (increasing false positives) and seasonal
differencing (lower overall accuracy).

The BAIM presented the best accuracy index from the original data and the difference index
(Table 5). The normalized NIR band by Z-score or by the mean presented the best fit for the burn area
detection, with higher overall accuracy values than all the spectral indices evaluated. The BAIM, NIR
band, GEMI, and MIRBI normalized by the mean had similar overall accuracy, while the NBR and
its variation NBR2 presented the fifth-best performance, despite being a widely-used index for the
mapping of burned areas. The NDVI showed the worst value for overall accuracy.

The annual difference already implies the loss of one year of the time series [83]. Moreover, the
use of fixed intervals without the image selection by quality causes the reduction of the validation area
due to the presence of clouds in the differenced images (Table 2). Although the seasonal differences
highlight the burned areas, there is confusion between newly cleared areas with or without burning
and omission of pixels burned in consecutive years.

Table 5. Average of best thresholds and overall accuracy (OA) for different tested procedures in the
years of 2001, 2002, 2004, 2005, 2008, and 2010.

Original Data

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

Threshold 17.48 0.206 0.560 1.312 0.148 0.230 0.480

OA 97.1% 97.0% 97.0% 97.0% 96.3% 96.7% 96.0%

Seasonal Difference (∆ = Pre-fire − Post-fire)

∆BAIM ∆Band 2 ∆GEMI ∆MIRBI ∆NBR ∆NBR2 ∆NDVI

Threshold −31.2 0.04 0.11 −0.25 0.22 0.12 0.22

OA 98.7% 98.2% 98.3% 98% 98.2% 98.4% 98.3%

Seasonal Difference (∆ = Pre-fire − Post-fire) with selected images by quality next to birthday

∆BAIM ∆Band 2 ∆GEMI ∆MIRBI ∆NBR ∆NBR2 ∆NDVI

Threshold −28.32 0.041 0.156 −0.406 0.278 0.138 0.172

OA 97.2% 97.1% 97.0% 97.0% 96.7% 96.5% 96.5%

Z-score normalization

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

Threshold 1.235 −1.744 −1.825 1.430 −1.925 −1.428 −1.918

OA 97.1% 97.4% 97.2% 97.0% 96.5% 96.5% 96.0%

Zero-mean normalization

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

Threshold 11 −0.109 −0.200 0.250 −0.284 −0.160 −0.203

OA 97.8% 97.9% 97.7% 97.3% 96.9% 96.9% 96.8%

The lower accuracy of the seasonal difference method compared to the normalization method
was due to the following factors: (a) Pixel quality, recurrent fires, and continuous deforestation. Pixel
quality is one of the main limitations of seasonal difference in the tropical region due to intense
cloud cover. The selection of high-quality pixels in two consecutive years is unlikely in most of the
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Amazon region, requiring algorithms for the selection of images close to the anniversary or temporal
composition methods. In contrast, the normalization method does not depend on pixel quality in
consecutive years, since it uses the entire time series available, facilitating the delimitation of fires in
regions with high cloud presence.

The seasonal difference in areas with high fire recurrence tends to omit burned areas in consecutive
years or regenerating regions due to the decrease in the difference values (Figure 9). The continuous
deforestation of the tropical regions generates areas burned in new deforestation with different values
of the fires in old deforestation, preventing the use of a single threshold value. Differently, the
normalization method allows the grouping of burned areas in new and old deforestation from only
one threshold value.
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Figure 10 compares the application zero-mean normalization and the seasonal difference in the
BAIM image. The RGB composition of the 2005 and 2006 dates (R-2005/G-2006/B-2005) highlights the
changes between the two methods. The RGB combination of zero-mean images showed deforested
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areas of 2006 in magenta color, burned deforestation areas in white, with burned areas in old
deforestation in green (Figure 10a). In this case, a single threshold identifies most of the fires in
the white and green areas. The seasonal difference method has inverse values in relation to the
zero-mean normalization method, where deforested areas in 2005 are in greens and “burned areas” in
2006 are in magenta (Figure 10b). However, burned deforestation areas also have green tones, mixing
with deforested areas and preventing their separation by a single threshold.
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Figure 10. Detection of burned areas in the years 2005 and 2006 using: (a) BAIM with zero-mean
normalization; and (b) ∆BAIM. Comparison of the burned areas extracted by visual interpretation of
the Landsat images and by the automated method in the MODIS images.

4.2. Validation and Data Comparison

The MODIS mapping validation indicated that the NIR band normalized by the mean achieved the
best result (Dice coefficient of 0.647) (Table 6). The zero-mean normalization obtained higher accuracy
than the other methods in most of the tests performed. Z-Score normalization presented a significant
improvement in the detection of burned areas in Band 2, GEMI, and MIRBI. The seasonal differencing
with image selection by quality next to birthday improved the classification of all indexes, exhibiting
better performance than the Z-Score normalization in the BAIM, GEMI, NBR, NBR2, and NDVI indices,
and higher than the zero-mean normalization for the NBR index. The seasonal differencing using
image selection showed the lowest commission error rate, and with the zero-mean normalization or
Z-score had the smallest error of omission.
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Table 6. Accuracy indices of the burned areas using MODIS times series in the study area. “DC” is the
Dice coefficient and “OA” is the overall accuracy.

Original Data

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

DC 0.588 0.527 0.337 0.326 0.422 0.430 0.399

OA 98.56% 98.71% 98.36% 98.31% 98.30% 97.71% 96.81%

Commission Errors 48.02% 34.21% 20.75% 27.44% 34.40% 61.99% 46.06%

Omission Errors 38.20% 53.75% 79.96% 76.95% 62.60% 45.49% 38.02%

Seasonal Difference (Pre-fire − Post-fire) with fixed interval

∆BAIM ∆Band 2 ∆GEMI ∆MIRBI ∆NBR ∆NBR2 ∆NDVI

DC 0.506 0.485 0.384 0.334 0.428 0.412 0.400

OA 98.15% 97.87% 97.11% 96.59% 97.51% 97.50% 97.15%

Commission Errors 29.82% 71.67% 40.71% 42. 37% 51.22% 54.21% 69.47%

Omission Errors 62.60% 42.85% 73. 57% 74.02% 61.23% 62.01% 59.41%

Seasonal Difference (Pre-fire − Post-fire) with selected images

∆BAIM ∆Band 2 ∆GEMI ∆MIRBI ∆NBR ∆NBR2 ∆NDVI

DC 0.592 0.606 0.481 0.357 0.537 0.487 0.425

OA 98.69% 98.74% 98.57% 98.49% 98.62% 98.52% 97.23%

Commission Errors 14.86% 32.30% 17.98% 25.56% 23.14% 35.46% 40.22%

Omission Errors 48.43% 38.71% 64.98% 76.45% 57.50% 58.50% 46.72%

Z-score normalization

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

DC 0.591 0.618 0.476 0.501 0.429 0.452 0.397

OA 98.38% 98.80% 98.54% 98.44% 98.69% 97.73% 96.38%

Commission Errors 45.42% 38.97% 34.16% 35.80% 45.77% 47.23% 56.81%

Omission Errors 39.36% 38.70% 62.58% 55.90% 45.45% 45.74% 45.59%

Zero-mean normalization

BAIM Band 2 GEMI MIRBI NBR NBR2 NDVI

DC 0.625 0.647 0.566 0.539 0.508 0.503 0.479

OA 98.36% 98.99% 98.44% 98.59% 98.66% 98.31% 97.54%

Commission Errors 38.01% 32.41% 28.29% 33.21% 35.55% 46.61% 48.60%

Omission Errors 31.64% 34.75% 55.20% 49.60% 42.69% 42.48% 30.96%

The McNemar test confirmed the statistical independence between most of the classification
methods, presenting values of x2 > 3.841 (Figure 11). The most accurate method (Band 2 with
zero-mean normalization) was statistically different from the other classifications. The procedures
with the highest degree of agreement between them were those derived from the GEMI, MIRBI, and
NBR2 indices, while the methods based on Band 2, BAIM, and Seasonal Difference were independent.

Considering the same reference data (Landsat-TM, ETM +, and OLI Images), the burned area
products (MCD45, MCD65, and FIRE CCI) presented less than 25% of commission errors, like the
seasonal difference method, but due to the high error rate of omission, the Dice coefficient was lower
than all the methods used. The MCD45 and FIRE CCI products had a Dice coefficient lower than
0.11 and omission errors higher than 90%. The MCD64 product obtained the Dice coefficient of 0.24
in detriment of the reduction of the omission errors, surpassing the products MCD45 and FIRE_CCI
(Table 7). The MODIS products still need improvements [24], validations in Africa using Landsat
images obtained 34% commission errors and 59% omission errors [86], and globally containing a
commission error of 46% and omission error of 72%, where specific biomass showed more satisfactory
results than others such as Borealis Forestry and Tropical and subtropical Savanna [38]. The imprecision
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of the proposed method occurred in small burn areas due to the spatial resolution difference between
the sensors used for validation, showing commission errors in forest and savanna areas. The proposed
method had a lower commission error rate than MODIS / MERIS products, which focused on the
resolution difference with the validation image (Figure 12).Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 28 
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Figure 11. McNemar’s test from the original image and the methods of normalization (zero-mean
and Z-score) and seasonal differencing (selected images). The black markings indicate the statistical
equivalence of the two methods with chi-square < 3.841.

Table 7. Dice coefficient and overall accuracy of the burned areas for MCD45/MCD64/FIRE CCI data
in the study area during 2001–2014 period.

Burned Area Product Overall Accuracy Dice Coefficient Commission Errors Omission Errors

MCD45 98.58% 0.11 24.34% 93.55%
MCD64 98.61% 0.24 23.83% 84.51%

FIRE_CCI 98.48% 0.09 24.89% 94.67%
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FIRE CCI products and Landsat TM image.

4.3. Mapping Validation by Land Cover Type

The accuracy analysis of the burned area mapping by different land cover used the result of
higher accuracy (NIR band and zero-mean normalization). The overall accuracy was higher than 98%
in all classes, due to the high proportion of unburned area correctly identified. The Campinarana and
Deforestation classes presented the highest Dice coefficients (0.778 and 0.755, respectively), and lower
commission and omission errors. Burnings in the Ombrophilous Forest obtained low commission
errors, but significant errors of omission. Burnings in savanna vegetation and seasonal forests presented
the highest rates of commission and omission errors, respectively (Table 8).

Table 8. Estimated accuracy of burned area for each land use/cover classes. The water and secondary
vegetation were not evaluated by the low level of representation of fires in the selected area.

Land Cover Overall Accuracy Dice Coefficient Commission Errors Omission Errors

Campinarana 99.25% 0.778 9.71% 27.60%
Deforestation/Pasture 99.19% 0.755 18.57% 34.76%
Ombrophilous Forest 98.68% 0.506 23.40% 49.62%

Savanna 98.62% 0.466 59.25% 37.42%
Seasonal Forest 98.57% 0.371 23.23% 76.85%

4.4. Land Use/Land Cover Classes and Burned Area Patterns

Fire events and deforestation showed a high correlation (Table 9). Deforestation had the highest
fire representativeness in the years studied, representing more than 70% of the total area burned
annually. This attested to the anthropogenic influence on current burning patterns, both in deforestation
and in agricultural management. In the study area, the Ombrophylous Forest had intense deforestation,
decreasing from 70% in 2000 to 59% in 2014, which resulted in a high number of burnings in the years
2004, 2006, and 2010. More than 16% of deforested areas burned in 2004, while less than 2% burned in
2013. The other types of vegetation (Savanna, Seasonal Forests, and Secondary Vegetation) presented a
low proportion of annual burned area, with average values smaller than 1% of the affected areas.
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Table 9. Annual burned area (km2 and percentage within each class) from MODIS daily images for
the following classes of land use and land cover: Campinarana (CP), Deforestation/Pasture (D/P),
Ombrophilous Forest (OF), Savanna (S), Seasonal Forest (SF), and Secondary Vegetation (SV).

Area (km2)

Year CP D/P OF S SF SV

2001 14.16
(0.5%)

280.66
(6.9%)

49.56
(0.1%)

2.55
(0.03%)

12.18
(0.2%)

0.28
(0.1%)

2002 12.84
(0.4%)

773.68
(14.4%)

84.08
(0.2%)

14.61
(0.18%)

12.77
(0.2%)

0.78
(0.2%)

2003 26.82
(0.9%)

497.05
(8.2%)

92.58
(0.2%)

9.06
(0.11%)

18.24
(0.3%)

1.05
(0.3%)

2004 51.60
(1.7%)

1203.22
(16.8%)

235.74
(0.5%)

15.58
(0.19%)

20.14
(0.3%)

0.12
(0.0%)

2005 33.10
(1.1%)

771.25
(9.9%)

111.60
(0.2%)

15.38
(0.19%)

23.97
(0.4%)

0.86
(0.3%)

2006 26.85
(0.9%)

781.16
(9.4%)

244.92
(0.5%)

22.15
(0.28%)

70.80
(1.1%)

1.52
(0.5%)

2007 18.24
(0.6%)

677.03
(7.6%)

143.28
(0.3%)

5.21
(0.06%)

22.24
(0.3%)

0.20
(0.1%)

2008 41.48
(1.4%)

625.33
(6.6%)

130.02
(0.3%)

28.77
(0.36%)

44.52
(0.7%)

1.37
(0.4%)

2009 15.19
(0.5%)

233.87
(2.3%)

121.21
(0.3%)

4.53
(0.06%)

52.62
(0.8%)

0.43
(0.1%)

2010 7.21
(0.2%)

749.36
(7.2%)

196.83
(0.4%)

11.10
(0.14%)

23.60
(0.4%)

1.62
(0.5%)

2011 23.66
(0.8%)

214.61
(2.0%)

90.71
(0.2%)

5.95
(0.07%)

15.54
(0.2%)

0.66
(0.2%)

2012 4.49
(0.1%)

395.61
(3.5%)

87.07
(0.2%)

2.78
(0.03%)

13.08
(0.2%)

0.40
(0.1%)

2013 10.77
(0.4%)

166.01
(1.4%)

47.75
(0.1%)

3.30
(0.04%)

6.06
(0.1%)

0.25
(0.1%)

2014 5.65
(0.2%)

748.24
(6.2%)

102.40
(0.2%)

3.18
(0.04%)

16.60
(0.3%)

2.06
(0.6%)

The highest occurrence of burned areas was concentrated near the BR-163 highway, especially in
the buffer zone up to 40 km (Table 10). More than 85% of the forest area showed no fires. In the 14 years
examined, the burned area was slightly more than 11% of the study area (Figure 13). Most of the area
burned only once or twice during the study period (7% and 3%). Approximately 1% of the pixels
burned in more than three years in the time series, concerning the agricultural areas. The indigenous
territories and the military base showed a low incidence of fires in the temporal series, in contrast,
the Jamanxim National Forest (highly degraded conservation unit) exhibited a high frequency of
fires. The private or unlicensed properties (without the direct intervention of public authorities)
totaled 24,358.8 km2 of the study area, and corresponded to the highest burning rates, followed by the
settlement projects (Figure 13).

Table 10. Burned area percentage in buffer zones with 20 km distance intervals from the
BR-163 highway.

Distance 20 km 40 km 60 km 80 km 100 km 120 km 140 km 160 km

Burned Area (%) 12.5% 10.1% 3.7% 1.6% 0.9% 2.7% 2.5% 0.7%
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5. Discussion

Consistent with other research, seasonal differences and standardization techniques improved
the burned area mapping [47,83,95]. However, seasonal differencing considering continuous data in
time has the following limitations [83]: (a) The subtraction operation highlights the noise present in
the two images (pre- and post-fire); (b) Fire detection is susceptible to interference of phenological
variations, oscillation of cropping cycles, and land use changes. Therefore, the main difficulty of the
seasonal difference is to ensure that other changes independent of the fire event are not confused with
burned areas, such as deforestation or atmospheric variations. The seasonal difference in continuous
data over time intensifies this limitation, as opposed to the use of discrete data chosen by the analyst.

Another alternative is the use of time series standardized by pixel, which has been used to identify
burned areas in the savanna region of Central Brazil [83]. This procedure converts the data set to
Z-Score values (with the mean of zero and standard deviation of one), facilitating the determination of
a threshold value of the burned areas from a reference image. This technique does not alter the relative
values of the temporal signature and avoids the errors described by the seasonal difference. However,
the application of this method to forest areas generated false positives mainly related to the presence
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of cloud shadows not detected by the MODIS sensor quality mask due to the resolution difference
between the products. The MODIS cloud mask has a 1-km resolution, while the images of this research
had 250- and 500-m resolutions. The time series of spectral indexes in forest areas shows low standard
deviation in comparison to the other targets, always having a photosynthetically active behavior with
little change over time. Therefore, the Z-score normalization that has the standard deviation as the
denominator causes an overestimation of the normalized forest values, differently from what occurs
in the vegetation with high seasonal variation such as the savannah. An alternative proposed in this
research was the use of zero-mean normalization, with only the subtraction by the mean, without
the division by the standard deviation. This normalization approach allowed an adaptation of the
method [83] for these vegetation types, and more accurate results in the detection of burned areas.
The main advantage of the zero-mean normalization is that it equalizes the values of the burned area
in the different scenarios of the Amazon region (forest, pasture, and deforestation), facilitating their
detection from the single threshold.

Except for the NBR index, all the data tested (band of Near Infrared, BAIM, GEMI, MIRBI,
NBR2, and NDVI) presented better accuracy using zero-mean normalization than the other procedures
(original image, seasonal differencing, seasonal differencing with the selected images, and Z-score),
attesting to the superiority of the zero-mean in detriment of the z-score normalization for the mapping
of burning areas in forest regions. The NBR index presents a higher accuracy using the seasonal
difference with the selected images.

Within the normalization procedures, the input data that had the best Dice coefficient were two:
(a) BAIM in the original image and seasonal difference with fixed interval; and (b) Infrared band
in the seasonal differencing with selected images, Z-score, and zero-mean normalization methods.
Therefore, the best result used the infrared band and zero-mean normalization. Pleniou et al. [96]
and Alonso-Canas [63] emphasized the ability to separate the burned areas from the near infrared.
Although the NBR and dNBR indices are widely used in the literature for the detection of burned
areas and fire severity [27,97], there are limitations in the study area due to the intense dynamics of
deforestation. Roy et al. [97] warned about the ineffectiveness of the NBR index to measure the severity
of burning in tropical forests.

Some limitations persist in the mapping of small areas burned due to MODIS spatial resolution,
as verified by other authors [81,98]. The burned areas on small farms and agrarian reform settlements
result in an underestimation of the total area burned. Moreover, the daily images may present
better results than the MODIS products from the multitemporal compositing techniques [66,99].
Future research efforts could use high spatial and temporal resolution satellite data, which should
reduce the omission of undetected small fires.

The comparison between the MCD45, MCD64, and FIRE CCI products and the reference burned
area mapping demonstrated proved unfeasible for use in the Amazon region due to the low detection
of burned areas. Libonati et al. [100] also highlighted a high percentage of omission errors in the
MCD45 product. Even with MCD64 product enhancements, the omission errors may exceed 60% [35].
Despite the limitations of the burned area products in the Amazon, these were developed for the world
surpassing in many cases other techniques of burned-area detection. The spatial resolution of 500 m
from MODIS and 300 m from FIRE CCI products influenced the difference between the two methods.

The methodology used presents better fire detection capacity in pasture/deforestation areas
and Campinarana vegetation. Deforested regions were the most affected by fires, where it is used at
regular intervals for pasture maintenance, combating invasive plants, pests, and improving low soil
productivity [13]. The lack of access to alternative agricultural management is also an essential factor
to explain the high rates of fires in the region [101]. Locations with a single occurrence of burning in
the time series are often fires in the native forest that originated externally in agricultural areas and
became out of control. In this context, fragmented forests are more vulnerable to fires because of the
increased border with agrarian regions [2,8].
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The Novo Progresso region is located between a conservation unit and Indigenous Parks that
are essential barriers to deforestation and fires [7,102]. However, the Jamanxim National Forest is
among the most deforested and burnt protected areas of the Brazilian Amazon due to the proximity
of the Cuiabá-Santarém highway. Currently, the Brazilian Congress is negotiating a 26% reduction
proposal in the Jamanxim National Forest area to allow the construction of a railroad for the transport
of grain from Mato Grosso by the port of Miritituba, Pará. This railway will undoubtedly cause impacts
increasing the occurrence of deforestation and fires.

Although the most widespread methods for detecting burned areas are based on specific
thresholds of spectral indices, the temporal normalization per pixel should be evaluated in the future
with other methods. Instead of considering spectral indices, several studies use spectral mixing
techniques to highlight burned areas. [85,103,104]. Thus, the temporal normalization techniques for
the pixel can be further tested in the time series of fraction images. Another approach used is the
supervised classification, either by pixel or object-based, which depends on the collection of samples
of the different targets present in the scene [105,106]. Thus, the supervised classification on normalized
data per pixel should be tested.

6. Conclusions

This study evaluated different procedures for the mapping of burned areas in the Amazon
Forest, considering different image processing in the MODIS time series, such as seasonal difference,
normalization (Z-score, zero-mean normalization, and without normalization), spectral indices and
bands (BAIM, GEMI, MIRBI, NBR, NBR2, NDVI, and NIR band). The zero-mean normalization and
seasonal difference showed improvements in burned area detection in comparison with the original
images. Although the seasonal difference method was widely used in other biomes, the zero-mean
normalization achieved better accuracy, confirmed by the McNemar statistical test. The use of the
NIR band presented the best results in burned area detection. The zero-mean normalization allowed
comparison of the burning behaviors of different environments in an integrated way, defining a single
threshold value for the different vegetal formations. This approach to time series normalization per
pixel is an innovation in the processing of remotely sensed data for detection of burned areas that
must be improved for other environments and monitoring studies. In addition to the methodology
presented, greater accuracy in the detection of burned areas in Campinarana and pastures, burned
areas occur predominantly in deforested areas, which account for more than 70% of annually burned
areas. The adopted methodology presented an overall accuracy (98.99%) greater than the burned
area products (MCD45, MCD64, and FIRE CCI), and low errors of omission, despite having higher
commission errors. The improvement of the monitoring of burned areas in the Amazon enables better
environmental management and the estimations of their impacts.
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