Achieving High Reliability in Data Acquisition
Abstract
:1. Introduction
- (a).
- This is one of very few research studies discussing the core segment (server side) data acquisition environment as a possible point of failure in urban meteorological network systems (UMNs).
- (b).
- There are no clear references to the problem of data reliability within the core segment. Based on seven years of experiences in UMNs research and development, this issue is a clear one.
- (c).
- The proposed model of a socket server addresses the problem of the reliability of received data, offering a high performance solution of data acquisition.
- (d).
- The paper offers an insight into real problems that could happen and are occurring in the core segment.
2. Related Work—Review of the Current WSN Systems and Introduction of Possible Points of Failure in Data Reliability
2.1. Related Work—A Review of Current WSN Systems
2.2. Communication between the Measuring Stations and the Server—Introduction to the Data Reliability Problem in WSNs
2.3. Points of Failure
3. Methodology behind the Case Study
3.1. High-Demand Socket Server Model
3.2. Core Process Role
3.3. Accept, Control and Worker Processes
3.4. Data Flow and Control Messages
3.5. Extreme Cases of System Operation
3.6. Discussion about the Operation of the HRSS System
4. Case Study
4.1. Case Study—Ipc in the Acquisition of Large Time Series
4.2. Initial Tests
4.3. Final Pseudo Climate Data Reliability Check
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, H.-O.P., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, X., Pidcock, S., et al., Eds.; 2018; Available online: https://www.researchgate.net/publication/329988490_Chapter_3_Impacts_of_15C_global_warming_on_natural_and_human_systems_In_Global_Warming_of_15_C_An_IPCC_special_report_on_the_impacts_of_global_warming_of_15_C_above_preindustrial_levels_and_related_gl (accessed on 20 January 2021).
- EU. Human Health Impacts of Climate Change in Europe; JRC Technical Reports; European Commission, Joint Research Centre, Institute for Prospective Technological Studies: Seville, Spain, 2014; p. 32. [Google Scholar]
- Gehrels, H.; van der Meulen, S.; Schasfoort, F.; Bosch, P.; Brolsma, R.; van Dinther, D.; Geerling, G.; Goossen, M.; Jacobs, C.; de Jong, M.; et al. Designing Green and Blue Infrastructure to Support Healthy Urban Living; TO2 federatie, De samenwerkende organisaties in toegepast onderzoek: Wageningen, The Netherlands, 2016; p. 109. [Google Scholar]
- UN. World Urbanization Prospects—The 2014 Revision; UN Department of Economic and Social Affairs: New York, NY, USA, 2015; p. 517. [Google Scholar]
- Ellena, M.; Breil, M.; Soriani, S. The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Clim. 2020, 34, 100676. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Depietri, Y.; Renaud, F.G.; Kallis, G. Heat waves and floods in urban areas: A policy-oriented review of ecosystem services. Sustain. Sci. 2011, 7, 95–107. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.; Liu, C.H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environ. Res. Lett. 2010, 5, 1–7. [Google Scholar] [CrossRef]
- Cetin, M. Determining the bioclimatic comfort in Kastamonu City. Environ. Monit. Assess. 2015, 187, 640. [Google Scholar] [CrossRef]
- Cetin, M.; Adiguzel, F.; Kaya, O.; Sahap, A. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ. Dev. Sustain. 2018, 20, 361–375. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milošević, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Nat. Hazards 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Prokić, M.; Savić, S.; Pavić, D. Pluvial flooding in urban areas across the European continent. Geogr. Pannonica 2019, 23, 216–232. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.; Kresoja, M.; Savić, S.; Lužanin, Z. Intraurban analysis of relative humidity and its cross-correlation with air temperature in Central-European city. In Proceedings of the 10th International Conference on Urban Climate Jointly with 14th Symposium on the Urban Environment, New York, NY, USA, 6–10 August 2018. [Google Scholar]
- Savić, S.; Lužanin, Z.; Milošević, D.; Kresoja, M. Intraurban analysis of air temperature in Central-European city. In Proceedings of the 10th International Conference on Urban Climate (ICUC10) with the 14th Symposium on the Urban Environment (SUE), New York, NY, USA, 6–10 August 2018. [Google Scholar]
- Grimmond, C.S.B. Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 2006, 84, 3–22. [Google Scholar] [CrossRef]
- Muller, C.L.; Champan, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X.-M. Sensors and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Ko, H.; Kim, J.H.; An, K.; Mesicek, L.; Marreiros, G.; Pan, S.B.; Kim, P. Smart home energy strategy based on human behaviour patterns for transformative computing. Inf. Process. Manag. 2020, 57. [Google Scholar] [CrossRef]
- Pule, M.; Yahya, A.; Chuma, J. Wireless sensor networks: A survey on monitoring water quality. J. Appl. Res. Technol. 2017, 15, 562–570. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z. 8-Wireless sensor networks (WSNs) in the agricultural and food industries. Robot. Autom. Food Ind. 2013, 171–199. [Google Scholar] [CrossRef]
- Souza, P.S.S.; Rubin, F.P.; Hohemberger, R.; Ferreto, T.C.; Lorenzo, A.F.; Luizelli, M.C.; Rossi, F.D. Detecting abnormal sensors via machine learning: An IoT farming WSN-based architecture case study. Measurement 2020, 164, 108042. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Wang, Y.; Chien, W.T.; Wei, C.Y.; Wang, X.; Hsieh, S.H. A BIM-based approach for predicting corrosion under insulation. Autom. Constr. 2019, 107. [Google Scholar] [CrossRef]
- Parthiban, T.; Ravi, R.; Parthiban, G.T. Potential monitoring system for corrosion of steel in concrete. Adv. Eng. Softw. 2005, 37, 375–381. [Google Scholar] [CrossRef]
- Carrero, M.A.; Musicante, M.A.; dos Santos, A.L.; Hara, C.S. A DSL for WSN software components coordination. Inf. Syst. 2019. [Google Scholar] [CrossRef]
- Di Graziano, A.; Marchetta, V.; Cafiso, S. Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. J. Traffic Transp. Eng. 2020, 7, 639–651. [Google Scholar] [CrossRef]
- Chen, S.; Lanxue, Z.; Tang, Y.; Shend, C.; Kumar, R.; Yu, K.; Tariq, U.; Bashiri, A.K. Indoor temperature monitoring using wireless sensor networks: A SMAC application in smart cities. Sustain. Cities Soc. 2020, 61. [Google Scholar] [CrossRef]
- Rajput, P.; Chaturvedi, M.; Patel, V. Opportunistic sensing based detection of crowdedness in public transport buses. Pervasive Mobile Comput. 2020, 68. [Google Scholar] [CrossRef]
- De Vos, L.W.; Droste, A.M.; Zander, M.J.; Overeem, A.; Leijnse, H.; Heusinkveld, B.G.; Steeneveld, G.J.; Uijlenhoet, R. Hydrometeorological Monitoring Using Opportunistic Sensing Networks in the Amsterdam Metropolitan Area. Bull. Am. Meteorol. Soc. 2020, 101, E167–E185. [Google Scholar] [CrossRef]
- Sotenga, P.Z.; Djouani, K.; Kurien, A.; Mwila, M. Implementation of an indoor localisation algorithm for Internet of Things. Futur. Gener. Comput. Syst. 2020, 107, 1037–1046. [Google Scholar] [CrossRef]
- De Paola, A.; Gaglio, S.; Re, G.L.; Ortolani, M. Sensor9k: A testbed for designing and experimenting with WSN-based ambient intelligence applications. Pervasive Mobile Comput. 2012, 8, 448–466. [Google Scholar] [CrossRef]
- Wang, A.; Shen, J.; Vijayakumar, P.; Zhu, Y.; Tian, L. Secure big data communication for energy efficient intra-cluster in WSNs. Inf. Sci. 2019, 505, 586–599. [Google Scholar] [CrossRef]
- Ergul, O.; Bicen, A.O.; Akan, O.B. Opportunistic reliability for cognitive radio sensor actor networks in smart grid. Ad Hoc Netw. 2016, 41, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Luo, Y.; Gu, C.; Li, F.; Yue, Y.; Yuan, Y. Reliability Analysis of Condition Monitoring Network of Wind Turbine Blade Based on Wireless Sensor Networks. IEEE Trans. Sustain. Energy 2019, 10, 549–557. [Google Scholar] [CrossRef]
- Carbajo, R.S.; Carbajo, E.S.; Basu, B.; McGoldrick, C. Routing in wireless sensor networks for wind turbine monitoring. Pervasive Mobile Comput. 2017, 39, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.; Shen, W.; Wang, X. Wireless Sensor Network Reliability and Security in Factory Automation: A Survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42. [Google Scholar] [CrossRef]
- Deng, R.; Chen, J.; Fan, J.; Sun, Y. A general approach for building Linux on sensor node Imote2. Comput. Stand. Interfaces 2012, 34, 101–108. [Google Scholar] [CrossRef]
- Campanile, L.; Gribaudo, M.; Iacono, M.; Mastroianni, M. Performance evaluation of a fog WSN infrastructure for emergency management. Simul. Model. Pr. Theory 2020, 104. [Google Scholar] [CrossRef]
- Mahdi, S.Q.; Gharghan, S.K.; Hasan, M.A. FPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environment. Measurement 2020, 167, 108276. [Google Scholar] [CrossRef]
- Šećerov, I.; Savić, S.; Milošević, D.; Arsenović, M.; Dolinaj, D.; Popov, S. Progressing urban climate research using a high-density monitoring network system. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef]
- Virkki, J.; Zhu, Y.; Meng, Y.; Chen, L. Reliability of WSN Hardware. Int. J. Embed. Syst. Appl. (IJESA). 2011, 1. [Google Scholar] [CrossRef]
- Smarsly, K.; Law, K.H. Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy. Adv. Eng. Softw. 2014, 73, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Watras, C.J.; Morrow, M.; Morrison, K.; Scannell, S.; Yaziciaglu, S.; Read, J.S.; Hu, Y.; Hanson, P.C.; Kratz, T. Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: Design and initial results. Environ. Monit. Assess. 2013, 186, 919–934. [Google Scholar] [CrossRef]
- Reina, D.G.; Toral, S.L.; Barrero, F.; Bessis, N.; Asimakopoulou, E. The role of ad hoc networks in the internet of things: A case scenario for smart environments. In Internet of Things and Intercooperative Computational Technologies for Collective Intelligence; Bessis, N., Xhafa, F., Varvarigou, D., Hill, R., Li, M., Eds.; Springer: New York, NY, USA, 2013; pp. 89–113. [Google Scholar] [CrossRef]
- Doherty, L.; Teasdale, D.A. Towards 100% Reliability in Wireless Monitoring Networks. In Proceedings of the 3rd ACM International Workshop on Performance Evaluation of Wireless ad Hoc, Sensor and Ubiquitous Networks, Terromolinos, Spain, 2–6 October 2006; pp. 132–135. [Google Scholar] [CrossRef]
- Shrestha, A.; Xing, L.; Liu, H. Infrastructure Communication Reliability of Wireless Sensor Networks. In Proceedings of the 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, Indianapolis, IN, USA, 29 September–1 October 2006. [Google Scholar] [CrossRef]
- Shrestha, A.; Xing, L.; Liu, H. Modeling and Evaluating the Reliability of Wireless Sensor Networks. In Proceedings of the 2007 Proceedings Annual Reliability and Maintainability Symposium, Orlando, FL, USA, 22–25 January 2007; pp. 186–191. [Google Scholar] [CrossRef]
- Venkatesan, L.; Shanmugavel, S.; Subramaniam, C. A Survey on Modeling and Enhancing Reliability of Wireless Sensor Network. Wirel. Sens. Netw. 2013, 5, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, M.A.; Seah, W.K.G.; Welch, I. Reliability in wireless sensor networks: A survey and challenges. Comput. Netw. 2015, 79, 166–187. [Google Scholar] [CrossRef]
- Casciati, S.; Vece, M. Real-time monitoring system for local storage and data transmission by remote control. Adv. Eng. Softw. 2017, 112, 46–53. [Google Scholar] [CrossRef]
- Jeske, M.; Rosset, V.; Nascimento, M.C.V. Determining the trade-offs between data delivery and energy consumption in large-scale WSNs by multi-objective evolutionary optimization. Comput. Netw. 2020, 179. [Google Scholar] [CrossRef]
- Rao, A.N.; Naik, B.R.; Devi, L.N. On the relay node placement in WSNs for lifetime maximization through metaheuristics. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Tao, M.; Li, X.; Yuan, H.; Wei, W. UAV-Aided trustworthy data collection in federated-WSN-enabled IoT applications. Inf. Sci. 2020, 532, 155–169. [Google Scholar] [CrossRef]
- Zahariev, P.Z.; Hristov, G.V. Performance evaluation of data delivery approaches for wireless sensor networks. Procedia Comput. Sci. 2011, 3, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, A.; Ghorbel, O.; BenSalah, M.S.; Abid, M. Spatio-temporal correlations for damages identification and localization in water pipeline systems based on WSNs. Comput. Netw. 2020, 171. [Google Scholar] [CrossRef]
- Silva, I.; Guedes, L.A.; Portugal, P.; Vasques, F. Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications. Sensors 2012, 12, 806–838. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yang, H.; Zou, Y.; Yu, D.; Yu, J. Joint Optimization of Routing and Storage Node Deployment in Heterogeneous Wireless Sensor Networks Towards Reliable Data Storage. In Wireless Algorithms, Systems, and Applications; Biagioni, E., Zheng, Y., Cheng, S., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Momani, M.; Takruri, M.; Al-Hmouz, R. Risk assessment algorithm in wireless sensor networks using beta distribution. Int. J. Comput. Netw. Commun. 2014, 6, 157–166. [Google Scholar] [CrossRef]
- Sun, Y.L.; Yang, Y. Trust Establishment in Distributed Networks: Analysis and Modeling. In Proceedings of the 2007 IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 1266–1273. [Google Scholar] [CrossRef]
- Espositoa, C.; Tamburisb, O.; Suc, X.; Choi, C. Robust Decentralised Trust Management for the Internet of Things by Using Game Theory. Inf. Process. Manag. 2020, 57. [Google Scholar] [CrossRef]
- Yarbrough, B.; Wagner, N.; Wagner, N. Assessing security risk for wireless sensor networks under cyber attack. In Proceedings of the Annual Simulation Symposium, Baltimore, MD, USA, 15–18 April 2018; pp. 1–12. [Google Scholar]
- Anita Daniel, D.; Roslin, S.E. Data Validation and Integrity Verification for Trust based Data Aggregation Protocol in WSN. Microprocess. Microsyst. 2020. [Google Scholar] [CrossRef]
- Maia, G.; Guidoni, D.L.; Viana, A.C.; Aquino, A.A.F.; Mini, R.A.F.; Loureiro, A.A.F. A distributed data storage protocol for heterogeneous wireless sensor networks with mobile sinks. Ad Hoc Netw. 2013, 11, 1588–1602. [Google Scholar] [CrossRef]
- Aboelfotoh, H.M.F.; ElMallah, E.S.; Hassanein, H.S. On the Reliability of Wireless Sensor Networks. In Proceedings of the 2006 IEEE International Conference on Communications, Istanbul, Turkey, 11–15 June 2006. [Google Scholar] [CrossRef]
- Chiang, Y.-H.; Keller, M.; Lim, R.; Huang, P.; Beutel, J. Light-weight Network Health Monitoring. In Proceedings of the 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), Beijing, China, 16–20 April 2012. [Google Scholar] [CrossRef]
- Raji, K.A.; Gbolagade, K.A. A Survey of Different Techniques for Energy-Efficient, Reliability and Fault Tolerant in Wireless Sensor Networks. Int. J. Wirel. Commun. Mobile Comput. 2019, 7, 19–26. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Yu, D.; Zou, Y.; Yu, J. Reliable data storage in heterogeneous wireless sensor networks by jointly optimizing routing and storage node deployment. Tsinghua Sci. Technol. 2021, 26, 230–238. [Google Scholar] [CrossRef]
- Hossain, M.A.; Tokhi, M.O. Inter-processor and inter-process communication in realtime multi-process computing. IFAC Proc. 2002, 35, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Shamsudeen, E. A study on inter process communications in distributed computer systems. IOSR J. Eng. (IOSRJEN) 2018, 8, 9–15. [Google Scholar]
- Khaneghah, E.M.; Mirtaheri, S.L.; Sharifim, M. Evaluating the Effect of Inter Process Communication Efficiency on High Performance Distributed Scientific Computing. In Proceedings of the IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Shanghai, China, 17–20 December 2008. [Google Scholar] [CrossRef]
- Alawneh, L.; Hamou-Lhadj, A.; Hassine, J. Segmenting large traces of inter-process communication with a focus on high performance computing systems. J. Syst. Softw. 2016, 120, 1–16. [Google Scholar] [CrossRef]
- Shahzada, F. Satellite Monitoring of Wireless Sensor Networks (WSNs). Procedia Comput. Sci. 2013, 21, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.; Savić, S.; Milošević, D.; Marković, V.; Bajšanski, I. Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geogr. Pannonica 2015, 19, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.; Dolinaj, D.; Pavić, D.; Milošević, D.; Savić, S.; Popov, S.; Živanov, Ž. Environmental Monitoring Systems: Review and Future Development. Wirel. Eng. Technol. 2019, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mooney, J.D. Developing Portable Software. In Information Technology; Reis, R., Ed.; IFIP International Federation for Information Processing; Springer: Boston, MA, USA, 2014; p. 157. [Google Scholar] [CrossRef] [Green Version]
- Lee, E. The Problem with Threads. Computer 2006, 39, 33–42. [Google Scholar] [CrossRef]
- Von Praun, C. Race Detection Techniques. In Encyclopedia of Parallel Computing; Padua, D., Ed.; Springer: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Hajduković, M. Operativni Sistemi: (Problemi i Struktura), 1 izd. ed; Fakultet Tehničkih Nauka: Novi Sad, Serbia, 2013; p. 281. [Google Scholar]
- Tanenbaum, A.S.; Bos, H. Modern Operating Systems, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2002; p. 951. [Google Scholar]
- Savić, S.; Gál, T.; Milošević, D.; Bajšanski, I.; Zénó Gyöngyösi, A.; Šećerov, I.; Gulyás, A.; Hévizi, B. Development of Adaptation System to Prevent Consequences of Extreme Precipitations and Pluvial Floods in Central European Cities; University of Novi Sad, Faculty of Technical Sciences (UNSFTN): Novi Sad, Serbia, 2019; ISBN 978-86-7031-522-8. [Google Scholar]
Client | Childs | UNRESPONDING_CHILD_PROC_TIMEOUT | UNRESPONDING_PROC_TIMEOUT | Overall Time Needed | CMESSG_REQ_TERMINATE | Expected Amount of Transfer Bytes | Actual Amount of Transferred Bytes | No. Errors |
---|---|---|---|---|---|---|---|---|
HRTC1 | 10,000 | 60 | 240 | 74 | 10,000 | 2,240,000 | 2,240,000 | 0 |
20,000 | 192 | 20,000 | 4,480,000 | 4,480,000 | ||||
HRTC2 | 10,000 | 60 | 240 | 60 | 10,000 | 2,240,000 | 2,240,000 | 0 |
20,000 | 170 | 20,000 | 4,480,000 | 4,480,000 | ||||
HRSS | 10,000 | 60 | 240 | 76 | 10,000 | 2,240,000 | 2,240,000 | 0 |
20,000 | 187 | 20,000 | 4,480,000 | 4,480,000 |
HRTC1 + HRTC2 | HRSS | Connections per Second | Stats.Socket_Accept_Default_Errors | Total of HRSS Processes | ||
---|---|---|---|---|---|---|
expected connections | received connections | lost connections | max | most of the time | 12 | 60,003 |
10,000 × 100 × 2 (2,000,000) | 1,990,642 | 9358 | 246 | 209 |
HRTC1 + HRTC2. | HRSS | Connections per Second | Stats.Socket_Accept_Default_Errors | Total of HRSS Processes | ||
---|---|---|---|---|---|---|
expected connections | received connections | lost connections | max | most of the time | 12 | 59,996 |
10,000 × 100 × 2 (2,000,000) | 19,866,996 | 133,004 | 241 | 201–219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šećerov, I.; Popov, S.; Sladojević, S.; Milin, D.; Lazić, L.; Milošević, D.; Arsenović, D.; Savić, S. Achieving High Reliability in Data Acquisition. Remote Sens. 2021, 13, 345. https://doi.org/10.3390/rs13030345
Šećerov I, Popov S, Sladojević S, Milin D, Lazić L, Milošević D, Arsenović D, Savić S. Achieving High Reliability in Data Acquisition. Remote Sensing. 2021; 13(3):345. https://doi.org/10.3390/rs13030345
Chicago/Turabian StyleŠećerov, Ivan, Srđan Popov, Srđan Sladojević, Dragana Milin, Lazar Lazić, Dragan Milošević, Daniela Arsenović, and Stevan Savić. 2021. "Achieving High Reliability in Data Acquisition" Remote Sensing 13, no. 3: 345. https://doi.org/10.3390/rs13030345
APA StyleŠećerov, I., Popov, S., Sladojević, S., Milin, D., Lazić, L., Milošević, D., Arsenović, D., & Savić, S. (2021). Achieving High Reliability in Data Acquisition. Remote Sensing, 13(3), 345. https://doi.org/10.3390/rs13030345