Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview of Himawari-8AHI
2.3. Satellite Data Used and Atmospheric Correction Approaches
2.3.1. Satellite Data
2.3.2. AHI Water-Leaving Reflectance Processing
2.4. In-Situ Hyperspectral Data
2.4.1. ASD FieldSpec Spectroradiometer Data
2.4.2. TriOS RAMSES Spectroradiometer Data
2.5. Water Analysis
2.6. TSS Algorithm
2.7. Cross-Validation of TSS Algorithm Using AHI Derived Rrs
2.8. Validation of Diurnal Variability of TSS and Turbidity Front Tracking
2.9. Accuracy Evaluation
3. Results
3.1. Comparison of Two Atmospheric Correction Approaches
3.2. In-Situ Validation of Water-Leaving Reflectance
3.3. Calibration and Validation of the Regional TSS Model
3.4. Validating TSS Model Using AHI Data
3.5. Hourly TSS Concentration Mapping
3.6. Validation of Diurnal Variation in Turbidity Front
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcântara, E. Evaluation of the suitability of MODIS, OLCI and OLI for mapping the distribution of total suspended matter in the Barra Bonita Reservoir (Tietê River, Brazil). Remote Sens. Appl. Soc. Environ. 2016, 4, 68–82. [Google Scholar] [CrossRef]
- Binding, C.E.; Bowers, D.G.; Mitchelson, J.E.G. An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery. Int. J. Remote Sens. 2003, 24, 3791–3806. [Google Scholar] [CrossRef]
- Blix, K.; Pálffy, K.; Tóth, V.R.; Eltoft, T. Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI. Water 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Viollier, M.; Sturm, B. CZCS data analysis in turbid coastal water. J. Geophys. Res. Atmos. 1984, 89, 4977–4985. [Google Scholar] [CrossRef]
- Fettweis, M.; Nechad, B.; Eynde, D. An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Cont. Shelf Res. 2007, 27, 1568–1583. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Han, X.; Feng, L. Towards a practical remote-sensing model of suspended sediment concentrations in turbid waters using MERIS measurements. Int. J. Remote Sens. 2015, 36, 3875–3889. [Google Scholar] [CrossRef]
- Doxaran, D.; Lamquin, N.; Park, Y.; Mazeran, C.; Ryu, J.H.; Wang, M.; Poteau, A. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2014, 146, 36–48. [Google Scholar] [CrossRef]
- Kratzer, S.; Brockmann, C.; Moore, G. Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sens. Environ. 2008, 112, 2284–2300. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Wang, H.; Li, D. Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens. Environ. 2009, 113, 2670–2681. [Google Scholar] [CrossRef]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogramm. Remote Sens. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center. MODIS to VIIRS: Building a Time Series. National Snow and Ice Data Center. Available online: https://nsidc.org/nsidc-monthly-highlights/2017/08/modis-viirs-building-time-series (accessed on 13 January 2021).
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B.J.R.S. Mapping water quality parameters with sentinel-3 ocean and land colour instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gao, S.; Wang, Y. Delineating suspended sediment concentration patterns in surface waters of the Changjiang Estuary by remote sensing analysis. Acta Oceanol. Sin. 2010, 29, 38–47. [Google Scholar] [CrossRef]
- Munday, J.C., Jr.; Alföldi, T.T. Landsat test of diffuse reflectance models for aquatic suspended solids measurement. Remote Sens. Environ. 1979, 8, 169–183. [Google Scholar] [CrossRef]
- Onderka, M.; Pekárová, P. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data. Sci. Total Environ. 2008, 397, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surf. Process. Landf. 2009, 34, 1082–1092. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S. Measurement of Coastal Water Quality Indicators Using Sentinel-2; An Evaluation Over Hong Kong and the Pearl River Estuary. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8249–8252. [Google Scholar]
- Munirm, M.; Ramadhan, A.F.; Nastiti, A.; Putri, A.A.; Bawono, M.R.K.S.; Nur, Z. Utilization of Sentinel-2A imagery For Mapping The dynamics of Total Suspended Sediment at The River Mouth of The Padang City. In Proceedings of the 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 30–31 July 2019; Volume 1, pp. 1–6. [Google Scholar]
- Saberioon, M.; Brom, J.; Nedbal, V.; Souček, P.; Císař, P. Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecol. Indic. 2020, 113, 106236. [Google Scholar] [CrossRef]
- Neukermans, G.; Ruddick, K.; Bernard, E.; Ramon, D.; Nechad, B.; Deschamps, P.Y. Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea. Opt. Express 2009, 17, 14029–14052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, C.E.L.; Couceiro, F.; Fones, G.R.; Helsby, R.; Amos, C.L.; Black, K.; Parker, E.R.; Greenwood, N.; Statham, P.J.; Kelly-Gerreyn, B.A. In situ flume measurements of resuspension in the North Sea. Estuar. Coast. Shelf Sci. 2011, 94, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Neukermans, G.; Ruddick, K.; Greenwood, N. Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor. Remote Sens. Environ. 2012, 124, 564–580. [Google Scholar] [CrossRef]
- Ruddick, K.; Vanhellemont, Q.; Yan, J.; Neukermans, G.; Wei, G.; Shang, S. Variability of suspended particulate matter in the Bohai Sea from the geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 331–345. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, D.; He, X.; Bai, Y. Diurnal variability of turbidity fronts observed by geostationary satellite ocean color remote sensing. Remote Sens. 2016, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Wang, S.; Qiu, Z.; Sun, D.; Bilal, M. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea. Opt. Express 2018, 26, 12191–12209. [Google Scholar] [CrossRef]
- Lou, X.; Hu, C. Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Visser, P.M.; Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 2018, 63, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H. Ocean color estimation by Himawari-8/AHI. In Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 9878, p. 987810. [Google Scholar]
- Chen, X.; Shang, S.; Lee, Z.; Qi, L.; Yan, J.; Li, Y. High-frequency observation of floating algae from AHI on Himawari-8. Remote Sens. Environ. 2019, 227, 151–161. [Google Scholar] [CrossRef]
- Ryu, J.H. GOCI Statusand GOCI-II Plan. Available online: https://iocs.ioccg.org/wp-content/uploads/0915-joo-hyung-ryu-agency-report.pdf (accessed on 13 January 2021).
- Zhou, Q.; Tian, L.; Wai, O.W.; Li, J.; Sun, Z.; Li, W. High-Frequency Monitoring of Suspended Sediment Variations for Water Quality Evaluation at Deep Bay, Pearl River Estuary, China: Influence Factors and Implications for Sampling Strategy. Water 2018, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Zhou, D.; Endler, R.; Lin, J.; Harff, J. Sedimentary development of the Pearl River Estuary based on seismic stratigraphy. J. Mar. Syst. 2010, 82, S3–S16. [Google Scholar] [CrossRef]
- Justesen, P.; Ellegaard, A.C.; Bernitt, L.; Lu, Q. 2-D & 3-D modeling of Hong Kong waters. In Proceedings of the Second International Conference of Hydrodynamics; Balkema: Rotterdam, The Netherlands, 1996; pp. 649–654. [Google Scholar]
- Jayawardena, A.W.; Lai, F. Time series analysis of water quality data in Pearl River, China. J. Environ. Eng. 1989, 115, 590–607. [Google Scholar] [CrossRef]
- Zhan, W.; Wu, J.; Wei, X.; Tang, S.; Zhan, H. Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015. Cont. Shelf Res. 2019, 172, 22–32. [Google Scholar] [CrossRef]
- Chen, C.; Tang, S.; Pan, Z.; Zhan, H.; Larson, M.; Jönsson, L. Remotely sensed assessment of water quality levels in the Pearl River Estuary, China. Mar. Pollut. Bull. 2007, 54, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Yin, K. Influence of monsoons and oceanographic processes on red tides in Hong Kong waters. Mar. Ecol. Prog. Ser. 2003, 262, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Yukio, K.H.M.; Misako, K. Himawari-8 SST by JAXA, Japan Aerospace Exploration Agency (JAXA); Earth Observation Research Center (EORC): Melbourne, Australia, 2015; Available online: http://adf5c324e923ecfe4e0a-6a79b2e2bae065313f2de67bbbf078a3.r67.cf1.rackcdn.com/Melbourne%20Workshop%202015%20-%20Monday%209th%20November%202015/M08satelliteoceanographywsmelbourneyukiokurihara.pdf (accessed on 13 January 2021).
- Japan Meteorological Agency. Himawari-8/9Himawari Standard DataUser’s Guide. Available online: https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v12.pdf (accessed on 13 January 2021).
- Monitor, J.H. JAXA Himawari Monitor. Available online: https://www.eorc.jaxa.jp/ptree/userguide.html (accessed on 13 January 2021).
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.R.; Wang, M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Appl. Opt. 1994, 33, 7754–7763. [Google Scholar] [CrossRef] [PubMed]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Proud, S.R.; Fensholt, R.; Rasmussen, M.O.; Sandholt, I. A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference of Meteosat Second Generation images. J. Geophys. Res. Atmos. 2010, 115, D17. [Google Scholar] [CrossRef]
- NASA. Giovanni the Bridge Between Data and Science v 4.34. Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 13 January 2021).
- Wang, M.; Shi, W. Cloud masking for ocean color data processing in the coastal regions. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3196–3205. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.P.; Sterward, R.G.; Hooker, S.; Mobley, C.D.; et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols; Goddard Space Flight Space Center: Greenbelt, MD, USA, 2003; Volume 3.
- Ruddick, K.; Cauwer, V.; Mol, B. Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data. In Remote Sensing of the Coastal Oceanic Environment; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5885, p. 588501. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- EPD. Marine Water Quality Data. Available online: http://epic.epd.gov.hk/EPICRIVER/marine/?lang=en (accessed on 13 January 2021).
- Hafeez, S.; Wong, M.S.; Ho, C.H.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, L.G. Spectral Analysis of Suspended Material in Coastal Waters: A Comparison Between Band Math Equations. 2010. Available online: https://docplayer.net/39330139-Spectral-analysis-of-suspended-material-in-coastal-waters-a-comparison-between-band-math-equations.html (accessed on 13 January 2021).
- Dorji, P.; Fearns, P. Atmospheric correction of geostationary Himawari-8 satellite data for Total Suspended Sediment mapping: A case study in the Coastal Waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 2018, 144, 81–93. [Google Scholar] [CrossRef]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loise, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Neukermans, G.; Ruddick, K. Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution. Remote Sens. Environ. 2014, 146, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Lou, M.; Chen, C.; Shi, P. Using in situ and satellite hyperspectral data to estimate the surface suspended sediments concentrations in the Pearl River estuary. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 731–738. [Google Scholar] [CrossRef]
- Liu, D.; Fu, D.; Xu, B.; Shen, C. Estimation of total suspended matter in the Zhujiang (Pearl) River estuary from Hyperion imagery. Chin. J. Oceanol. Limnol. 2012, 30, 16–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Chen, C.; Chen, L.; Zhang, B.; Gitelson, A.A. Estimation of chlorophyll-a concentration in estuarine waters: Case study of the Pearl River estuary, South China Sea. Environ. Res. Lett. 2011, 6, 24016. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Q.; Chen, C.; Liu, F.; Jin, G. Retrieval of suspended sediment concentration in the pearl river estuary from meris using support vector machines. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. 239–242. [Google Scholar]
Band Number | Central Wavelength (μm) | Spatial Resolution at SSP * (km) |
---|---|---|
1 | 0.47 | 1 |
2 | 0.51 | 1 |
3 | 0.64 | 0.5 |
4 | 0.86 | 1 |
5 | 1.6 | 2 |
6 | 2.3 | 2 |
Date | Time | Timestep |
---|---|---|
25 January 2016 | 10:00–15:00 | every 10 min |
7 February 2016 | 10:00–15:00 | every 10 min |
8 February 2016 | 10:00–15:00 | every 10 min |
19 December 2016 | 10:00–15:00 | every 10 min |
27 January 2017 | 10:00–15:00 | every 10 min |
11 January 2018 | 10:00–15:00 | every 10 min |
12 January 2018 | 10:00–15:00 | every 10 min |
16 January 2018 | 10:00–15:00 | every 10 min |
23 January 2019 | 10:00–15:00 | every 10 min |
Area | Water Quality Parameter | Range (Min–Max) | Mean ± S.D. |
---|---|---|---|
Port Shelter | Suspended Solids (mg/L) | 0.6–4.0 | 1.76 ± 0.95 |
Turbidity (NTU) | 0.02–1.19 | 0.32 ± 0.38 | |
Chlorophyll-a (μg/L) | 0.2–1.9 | 1.19 ± 0.53 | |
North Western Buffer and the neighboring area | Suspended Solids (mg/L) | 11.0–70.0 | 24.46 ± 16.05 |
Turbidity (NTU) | 5.1–25.8 | 9.97 ± 5.65 | |
Chlorophyll-a (μg/L) | 0.9–2.6 | 1.59 ± 0.59 | |
Pearl River Estuary (PRE) | Suspended Solids (mg/L) | 18.5–114.8 | 47.19 ± 26.03 |
Turbidity (NTU) | - | - | |
Chlorophyll-a (μg/L) | 0.69–3.33 | 1.35 ± 0.64 |
Band | Box A | Box B | Box C | ||||
---|---|---|---|---|---|---|---|
SWIR | NIR-SWIR | SWIR | NIR-SWIR | SWIR | NIR-SWIR | ||
1 | Mean | 0.0400 | 0.0306 | 0.0384 | 0.0340 | 0.0140 | 0.0111 |
STD | 0.0085 | 0.0063 | 0.0078 | 0.0062 | 0.0062 | 0.0050 | |
ARE | 23.3% | 13.0% | 66.6% | ||||
2 | Mean | 0.0583 | 0.0494 | 0.0520 | 0.0478 | 0.0185 | 0.0158 |
STD | 0.0081 | 0.0058 | 0.0090 | 0.0081 | 0.0066 | 0.0052 | |
ARE | 15.3% | 9.3% | 29.9% | ||||
3 | Mean | 0.0612 | 0.0534 | 0.0313 | 0.0277 | 0.0048 | 0.0019 |
STD | 0.0184 | 0.0161 | 0.0180 | 0.0174 | 0.0036 | 0.0025 | |
ARE | 13.3% | 16.5% | 208.5% | ||||
4 | Mean | 0.0120 | 0.0062 | 0.0058 | 0.0032 | ||
STD | 0.0085 | 0.0070 | 0.0054 | 0.0044 | |||
ARE | 59.9% | 97.6% |
Band 1 (440 nm) | Band 2 (510 nm) | Band 3 (640 nm) | ||||
---|---|---|---|---|---|---|
NIR-SWIR | SWIR | NIR-SWIR | SWIR | NIR-SWIR | SWIR | |
R | 0.43 | 0.66 | 0.55 | 0.72 | 0.86 | 0.87 |
MAE | 0.031 | 0.016 | 0.030 | 0.016 | 0.012 | 0.012 |
RMSE | 0.034 | 0.02 | 0.032 | 0.019 | 0.014 | 0.014 |
APD | 124% | 47% | 71% | 31% | 94% | 38% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, S.; Wong, M.S.; Abbas, S.; Jiang, G. Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes. Remote Sens. 2021, 13, 336. https://doi.org/10.3390/rs13030336
Hafeez S, Wong MS, Abbas S, Jiang G. Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes. Remote Sensing. 2021; 13(3):336. https://doi.org/10.3390/rs13030336
Chicago/Turabian StyleHafeez, Sidrah, Man Sing Wong, Sawaid Abbas, and Guangjia Jiang. 2021. "Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes" Remote Sensing 13, no. 3: 336. https://doi.org/10.3390/rs13030336
APA StyleHafeez, S., Wong, M. S., Abbas, S., & Jiang, G. (2021). Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes. Remote Sensing, 13(3), 336. https://doi.org/10.3390/rs13030336