Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images
Abstract
:1. Introduction
- (1)
- To determine the suitability of the POT method for studying lake ice in general.
- (2)
- To explore the duration of the ice period and the variation of lake ice by POT.
- (3)
- To analyze the correlation between lake ice and climate based on the meteorological data we collected.
2. Background of Lake Khovsgol
3. Data and Processing
3.1. Data Acquisition
3.2. Pixel Offset Estimation
4. Results and Analysis
4.1. Time Series Displacement for Ice Motion
4.2. Ice Motion Features for Completing Lake Ice
4.3. Ice Topographic Feature Extraction for Completing Lake Ice
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murfitt, J.; Duguay, C.R. Assessing the performance of methods for monitoring ice phenology of the world’s largest high Arctic lake using high-density time series analysis of Sentinel-1 data. Remote Sens. 2020, 12, 382. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, H.; Wang, J.; Hao, X. Monitoring high-altitude river ice distribution at the basin scale in the northeastern Tibetan Plateau from a Landsat time-series spanning 1999–2018. Remote Sens. Environ. 2020, 247, 111915. [Google Scholar] [CrossRef]
- Gou, P.; Ye, Q.; Che, T.; Feng, Q.; Ding, B.; Lin, C.; Zong, J. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products. J. Great Lakes Res. 2017, 43, 989–998. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [Green Version]
- Dean, W.E.; Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 1998, 26, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Choiński, A.; Ptak, M.; Skowron, R.; Strzelczak, A. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 2015, 53, 42–49. [Google Scholar] [CrossRef]
- Dibike, Y.; Prowse, T.; Bonsal, B.; Rham, L.D.; Saloranta, T. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. Int. J. Climatol. 2012, 32, 695–709. [Google Scholar] [CrossRef]
- Mason, L.A.; Riseng, C.M.; Gronewold, A.D.; Rutherford, E.S.; Wang, J.; Clites, A.; Smith, S.D.P.; McIntyre, P.B. Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Clim. Chang. 2016, 138, 71–83. [Google Scholar] [CrossRef]
- Bai, X.; Wang, J.; Sellinger, C.; Clites, A.; Assel, R. Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO. J. Geophys. Res. Ocean. 2012, 117, C03011. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D.M. Break-up Dates of Alpine Lakes as Proxy Data for Local and Regional Mean Surface Air Temperatures. Clim. Chang. 1997, 37, 407–439. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, J.J.; Benson, B.J.; Kratz, T.K. Temporal coherence in the limnology of a suite of lakes in Wisconsin, USA. Freshw. Biol. 1990, 23, 145–159. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the northern hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [Green Version]
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.J. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Granin, N.G.; Aslamov, I.A.; Kozlov, V.V.; Makarov, M.M.; Kirillin, G.; McGinnis, D.F.; Kucher, K.M.; Blinov, V.V.; Ivanov, V.G.; Mizandrontsev, I.B. Methane hydrate emergence from Lake Baikal: Direct observations, modelling, and hydrate footprints in seasonal ice cover. Sci. Rep. 2019, 9, 19361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouraev, A.V.; Zakharova, E.A.; Rémy, F.; Suknev, A.Y. Study of Lake Baikal Ice Cover from Radar Altimetry and In–Situ Observations. Mar. Geod. 2015, 38, 477–486. [Google Scholar] [CrossRef]
- Kouraev, A.; Semovski, S.; Shimaraev, M.; Mognard, N.; Legresy, B.; Remy, F. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens. Environ. 2007, 108, 240–253. [Google Scholar] [CrossRef]
- Kavanaugh, J.; Schultz, R.; Andriashek, L.D.; van der Baan, M.; Ghofrani, H.; Atkinson, G.; Utting, D.J. A New Year’s Day icebreaker: Icequakes on lakes in Alberta, Canada. Can. J. Earth Sci. 2019, 56, 183–200. [Google Scholar] [CrossRef]
- Wang, J.; Bai, X.; Leshkevich, G.; Colton, M.; Clites, A.; Lofgren, B. Severe Ice Cover on Great Lakes During Winter 2008–2009. Eos Trans. Am. Geophys. Union 2010, 91, 41–42. [Google Scholar] [CrossRef] [Green Version]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Ménard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Assel, R.; Cronk, K.; Norton, D. Recent trends in Laurentian Great Lakes ice cover. Clim. Chang. 2003, 57, 185–204. [Google Scholar] [CrossRef]
- Assel, R.A.; Robertson, D.M. Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnol. Oceanogr. 1995, 40, 165–176. [Google Scholar] [CrossRef]
- Hanson, H.P.; Hanson, C.S.; Yoo, B.H. Recent Great Lakes ice trends. Bull. Am. Meteorol. Soc. 1992, 73, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.B. The potential impacts of climate change on the Great Lakes. Bull. Am. Meteorol. Soc. 1991, 72, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Distribution and relevance of aufeis (icing) in the Upper Indus Basin. Sci. Total Environ. 2021, 780, 146604. [Google Scholar] [CrossRef] [PubMed]
- How, P.; Messerli, A.; Mätzler, E.; Santoro, M.; Wiesmann, A.; Caduff, R.; Langley, K.; Bojesen, M.H.; Paul, F.; Kääb, A.J. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 2021, 11, 4481. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, C.; Lu, Z.; Yang, C.; Zhang, Q.J. Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sens. 2020, 12, 3466. [Google Scholar] [CrossRef]
- Andersen, J.K.; Kusk, A.; Boncori, J.P.M.; Hvidberg, C.S.; Grinsted, A. Improved Ice Velocity Measurements with Sentinel-1 TOPS Interferometry. Remote Sens. 2020, 12, 2014. [Google Scholar] [CrossRef]
- Lemos, A.; Shepherd, A.; McMillan, M.; Hogg, A.E.; Hatton, E.; Joughin, I. Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. Cryosphere 2018, 12, 2087–2097. [Google Scholar] [CrossRef] [Green Version]
- Duncan, K.; Farrell, S.L.; Connor, L.N.; Richter-Menge, J.; Hutchings, J.K.; Dominguez, R. High-resolution airborne observations of sea-ice pressure ridge sail height. Ann. Glaciol. 2018, 59, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Smith, B.E.; Howat, I. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 2018, 64, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damsgaard, A.; Egholm, D.L.; Beem, L.H.; Tulaczyk, S.; Larsen, N.K.; Piotrowski, J.A.; Siegfried, M.R. Ice flow dynamics forced by water pressure variations in subglacial granular beds. Geophys. Res. Lett. 2016, 43, 12–65. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Bhardwaj, A.; Martín-Torres, F.J. LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sens. Environ. 2016, 177, 125–143. [Google Scholar] [CrossRef]
- Putkinen, N.; Eyles, N.; Putkinen, S.; Ojala, A.E.; Palmu, J.; Sarala, P.; Väänänen, T.; Räisänen, J.; Saarelainen, J.; Ahtonen, N. High-resolution LiDAR mapping of glacial landforms and ice stream lobes in Finland. Bull. Geol. Soc. Finl. 2017, 89, 64–81. [Google Scholar] [CrossRef]
- Hopkinson, C.; Demuth, M. Using airborne lidar to assess the influence of glacier downwasting on water resources in the Canadian Rocky Mountains. Can. J. Remote Sens. 2006, 32, 212–222. [Google Scholar] [CrossRef]
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Gourmelen, N.; Trouvé, E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Martynova, N.A. Soils of unique phosphorites’ landscapes of lake Khovsgol’ depression (Mongolia) of Baikal rift zone: Ecological features of functioning and necessity for their conservation. IOP Conf. Ser. Earth Environ. Sci. 2020, 408, 12081. [Google Scholar] [CrossRef]
- Butina, T.V.; Potapov, S.A.; Belykh, O.I.; Mukhanov, V.S.; Rylkova, O.A.; Damdinsuren, N.; Chojdash, B. Molecular genetic diversity of the Myoviridae family cyanophages in Lake Khövsgöl (Mongolia). Mol. Biol. 2014, 48, 906–910. [Google Scholar] [CrossRef]
- Hamamura, N.; Liu, Y.; Inskeep, W.P. Identification of bacterial community and arsenate-reducing bacteria associated with a soda lake in Khovsgol, Mongolia. Interdiscip. Stud. Environ. Chem. 2012, 6, 99–107. [Google Scholar]
- Kouraev, A.V.; Zakharova, E.A.; Rémy, F.; Kostianoy, A.G.; Shimaraev, M.N.; Hall, N.M.J.; Suknev, A.Y. Giant ice rings on lakes Baikal and Hovsgol: Inventory, associated water structure and potential formation mechanism. Limnol. Oceanogr. 2016, 61, 1001–1014. [Google Scholar] [CrossRef]
- Goulden, C.E.; Sitnikova, T.; Gelhaus, J.; Boldgiv, B. The Geology, Biodiversity and Ecology of Lake Hövsgöl (Mongolia); Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Goulden, C.E.; Gelhaus, J.; Hession, C.; Boldgiv, B. The Blue Pearl of Mongolia. Focus Geogr. 2002, 47, 14–19. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Rémy, F.; Kostianoy, A.G.; Shimaraev, M.N.; Hall, N.M.; Suknev, A.Y. Ice Cover and Associated Water Structure in Lakes Baikal and Hovsgol from Satellite Observations and Field Studies. In Remote Sensing of the Asian Seas; Springer: Berlin/Heidelberg, Germany, 2019; pp. 541–555. [Google Scholar]
- Kumar, R.; Bahuguna, I.M.; Ali, S.N.; Singh, R. Lake inventory and evolution of glacial lakes in the Nubra-Shyok basin of Karakoram Range. Earth Syst. Environ. 2020, 4, 57–70. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, L.; Liao, M.; Feng, G.; Dong, J.; Ao, M.; Yu, Y. Quantifying the spatio-temporal patterns of dune migration near Minqin Oasis in northwestern China with time series of Landsat-8 and Sentinel-2 observations. Remote Sens. Environ. 2020, 236, 111498. [Google Scholar] [CrossRef]
- He, L.J.; Feng, G.C.; Feng, Z.X.; Gao, H. Coseismic displacements of 2016 MW7. 8 Kaikoura, New Zealand earthquake, using Sentinel-2 optical images. Acta Geod. Cartogr. Sin. 2019, 48, 339. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M.; Tsuzuku, K.; Watanabe, T.; Kamijo, S.; Aoki, E. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sens. Environ. 2014, 155, 3–12. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Atkinson, P. M Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, F.; Leprince, S.; Keene, L. User’s Guide to COSI-CORR Co-Registration of Optically Sensed Images and Correlation; California Institute of Technology: Pasadena, CA, USA, 2009; p. 38. [Google Scholar]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Jiang, Q.; Shi, C.; Xu, X.; Gong, Y.; Xi, J.; Liu, W.; Liu, B. Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran. Remote Sens. 2021, 13, 785. [Google Scholar] [CrossRef]
- Lacroix, P.; Araujo, G.; Hollingsworth, J.; Taipe, E. Self-Entrainment Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series. J. Geophys. Res. Earth Surf. 2019, 124, 1201–1216. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, Y.; Ma, C.; Ma, Y. Retrospective deformation of the Baige landslide using optical remote sensing images. Landslides 2020, 17, 659–668. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. Complete three-dimensional near-field surface displacements from imaging geodesy techniques applied to the 2016 Kumamoto earthquake. Remote Sens. Environ. 2019, 232, 111321. [Google Scholar] [CrossRef]
- Avouac, J.; Ayoub, F.; Wei, S.; Ampuero, J.; Meng, L.; Leprince, S.; Jolivet, R.; Duputel, Z.; Helmberger, D. The 2013, Mw 7.7 Balochistan Earthquake, seismic slip boosted on a misoriented fault. Earth Planet. Sci. Lett. 2014, 391, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J. Geod. 2012, 86, 1029–1041. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. High-quality three-dimensional displacement fields from new-generation SAR imagery: Application to the 2017 Ezgeleh, Iran, earthquake. J. Geod. 2019, 93, 573–591. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Leppäranta, M.; Reinart, A. Modeling ice dynamics in Lake Peipsi. Int. Ver. Für Theor. Und Angew. Limnol. Verh. 2006, 29, 1443–1446. [Google Scholar] [CrossRef]
- Zhou, Y.; Walker, R.T.; Hollingsworth, J.; Talebian, M.; Song, X.; Parsons, B.J.E.; Letters, P.S. Coseismic and postseismic displacements from the 1978 Mw 7.3 Tabas-e-Golshan earthquake in eastern Iran. Earth Planet. Sci. Lett. 2016, 452, 185–196. [Google Scholar] [CrossRef]
- Gold, R.D.; Reitman, N.G.; Briggs, R.W.; Barnhart, W.D.; Hayes, G.P.; Wilson, E.M. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements. Tectonophysics 2015, 660, 65–78. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.; Allemand, P.; Ulrich, P. Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Ali, E.; Xu, W.; Ding, X. Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation. ISPRS J. Photogramm. Remote Sens. 2020, 164, 106–124. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Leprince, S.; Muse, P.; Avouac, J.P. In-Flight CCD Distortion Calibration for Pushbroom Satellites Based on Subpixel Correlation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2675–2683. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.R.; Meyer, F.J.; Freymueller, J.T.; Kaufman, A.M. Evaluating landfast sea ice stress and fracture in support of operations on sea ice using SAR interferometry. Cold Reg. Sci. Technol. 2018, 149, 51–64. [Google Scholar] [CrossRef]
- Dierking, W.; Lang, O.; Busche, T. Sea ice local surface topography from single-pass satellite InSAR measurements: A feasibility study. Cryosphere 2017, 11, 1967–1985. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, A.R.; Dammann, D.O.; Johnson, M.A.; Eicken, H.; Meyer, F.J. Measurement and imaging of infragravity waves in sea ice using InSAR. Geophys. Res. Lett. 2016, 43, 6383–6392. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Hajnsek, I. Polarimetric Behavior for the Derivation of Sea Ice Topographic Height From TanDEM-X Interferometric SAR Data. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1095–1110. [Google Scholar] [CrossRef]
- Liu, G.; Qiao, X.; Yu, P.; Zhou, Y.; Zhao, B.; Xiong, W. Rupture Kinematics of the 11 January 2021 Mw 6.7 Hovsgol, Mongolia, Earthquake and Implications in the Western Baikal Rift Zone. Seismol. Res. Lett. 2021, 92, 3318–3326. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Radziminovich, N.; Fang, N.; Xie, L. Coseismic Fault Slip and Transtensional Stress Field in the Hovsgol Basin Revealed by the 2021 Mw 6.7 Turt, Mongolia Earthquake. Nat. Hazards Earth Syst. Sci. 2013, 13, 35–44. [Google Scholar] [CrossRef]
- Choe, B.; Samsonov, S.V.; Jung, J. Landfast ice growth and displacement in the Mackenzie Delta observed by 3D time-series SAR speckle offset tracking. Cryosphere 2020, 1–19. [Google Scholar] [CrossRef]
- Kostecki, M. Differences in Ice Cover in the Anthropogenic Reservoir of Pławniowice in the Years 1986–2012. Arch. Environ. Prot. 2013, 39, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Hydrol. Res. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Marszelewski, W.; Skowron, R. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes. Hydrol. Sci. J. 2006, 51, 336–349. [Google Scholar] [CrossRef]
- Leppäranta, M. Modelling the Formation and Decay of Lake Ice. In The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2009; pp. 63–83. [Google Scholar]
- Battogtokh, D.; Bayasgalan, A.; Wang, K.; Ganzorig, D.; Bayaraa, J. The 2021 M w 6.7 Khankh earthquake in the Khuvsgul rift, Mongolia. Mongolian Geoscientist. 2021, 26, 46–61. [Google Scholar] [CrossRef]
Sensor | Acquisition Dates | Sun Zenith Angle (°) | Sun Azimuth Angle (°) | Cloud Cover (%) |
---|---|---|---|---|
S2B_MSIL2A | 7 December 2020 | 74.086 | 170.853 | 23.0 |
S2A_MSIL2A | 12 December2020 | 74.595 | 170.363 | 40.8 |
S2B_MSIL2A | 17 December 2020 | 74.922 | 169.821 | 42.0 |
S2B_MSIL2A | 27 December 2020 | 75.007 | 168.653 | 32.6 |
S2A_MSIL2A | 3 January 2021 | 74.976 | 165.447 | 60.9 |
S2B_MSIL2A | 8 January 2021 | 73.564 | 165.169 | 20.3 |
S2A_MSIL2A | 13 January 2021 | 72.693 | 164.282 | 32.1 |
S2B_MSIL2A | 18 January 2021 | 71.925 | 163.493 | 25.8 |
S2A_MSIL2A | 23 January 2021 | 70.527 | 162.912 | 54.6 |
S2A_MSIL2A | 2 February 2021 | 68.152 | 162,235 | 24.8 |
S2B_MSIL2A | 7 February 2021 | 67.986 | 161.583 | 21.1 |
S2A_MSIL2A | 12 February 2021 | 66.409 | 161.189 | 46.6 |
S2B_MSIL2A | 17 February 2021 | 64.723 | 160.852 | 36.2 |
S2A_MSIL2A | 22 February 2021 | 62.948 | 160.560 | 36.6 |
S2B_MSIL2A | 27 February 2021 | 61.094 | 160.330 | 53.2 |
S2A_MSIL2A | 4 March 2021 | 59.181 | 160.133 | 44.5 |
S2B_MSIL2A | 9 March 2021 | 57.220 | 159.980 | 56.2 |
S2A_MSIL2A | 14 March 2021 | 55.230 | 159.851 | 47.1 |
S2B_MSIL2A | 19 March 2021 | 53.223 | 159.748 | 50.1 |
S2A_MSIL2A | 24 March 2021 | 51.215 | 159.661 | 14.7 |
S2A_MSIL2A | 3 April 2021 | 47.258 | 159.491 | 0.68 |
S2B_MSIL2A | 18 April 2021 | 41.673 | 159.049 | 0.36 |
S2A_MSIL2A | 13 May 2021 | 34.179 | 157.250 | 0.91 |
S2B_MSIL2A | 18 May 2021 | 33.062 | 156.676 | 26.9 |
S2B_MSIL2A | 28 May 2021 | 31.291 | 155.878 | 8.3 |
S2A_MSIL2A | 2 June 2021 | 30.652 | 154.647 | 0.7 |
S2B_MSIL2A | 7 June 2021 | 30.173 | 155.938 | 0.6 |
S2B_MSIL2A | 17 June 2021 | 29.735 | 152.650 | 2.5 |
Reference-Image | Secondary-Image | EW Displacement (meters) | NS Displacement (meters) | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
12 December 2020 | 17 December 2020 | 0.3 | 1.4 | 1.3 | 1.3 |
17 December 2020 | 27 February 2021 | −1.3 | 0.8 | −1.9 | 1.4 |
8 January 2021 | 13 January 2021 | 2.3 | 1.0 | −1.5 | 1.1 |
18 January 2021 | 23 January 2021 | −0.6 | 0.7 | −3.1 | 1.3 |
7 February 2021 | 12 February 2021 | −1.0 | 1.2 | −1.6 | 1.3 |
27 February 2021 | 4 March 2021 | −2.0 | 0.7 | 1.2 | 1.0 |
18 April 2021 | 13 May 2021 | −0.3 | 2.3 | −2.2 | 2.3 |
13 May 2021 | 18 May 2021 | 1.7 | 2.1 | 3.0 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; He, P.; Hu, X.; Liu, Z. Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images. Remote Sens. 2021, 13, 4979. https://doi.org/10.3390/rs13244979
Zhang J, He P, Hu X, Liu Z. Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images. Remote Sensing. 2021; 13(24):4979. https://doi.org/10.3390/rs13244979
Chicago/Turabian StyleZhang, Jue, Ping He, Xiaoping Hu, and Zhumei Liu. 2021. "Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images" Remote Sensing 13, no. 24: 4979. https://doi.org/10.3390/rs13244979
APA StyleZhang, J., He, P., Hu, X., & Liu, Z. (2021). Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images. Remote Sensing, 13(24), 4979. https://doi.org/10.3390/rs13244979