A Supplementary Module to Improve Accuracy of the Quality Assessment Band in Landsat Cloud Images
Abstract
:1. Introduction
2. The QA_SM Method
2.1. Step1: Identifying the Initial Cloud Pixels
2.2. Step 2: Identifying the Initial Cloud Shadow Pixels
2.3. Step 3: Matching the Initial Cloud and Cloud Shadow Pixels
2.4. Step 4: Generating the Final QA Band
3. Data and Experiments
3.1. Experiment I: Evaluations at Four Test Sites of China
3.1.1. Experiment I Design
3.1.2. The Reflectance Values of Cloud and Cloud Shadow Pixels Simulated by MODTRAN
3.2. Experiment II: Tests on the Landsat 8 Cloud Cover Validation Dataset
4. Results
4.1. Experiment I—Evaluations at the Four Test Sites of China
4.1.1. Assessments for Different QA Bands
4.1.2. Quantitative Assessments for Cloud Removal by Using Different QA Bands
4.2. Experiment II—Evaluations on the Landsat 8 Cloud Cover Validation Dataset
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; Zhang, W. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Hughes, M.J.; Hayes, D. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing. Remote Sens. 2014, 6, 4907–4926. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Thomas, N.; Goward, S.N.; Masek, J.G.; Zhu, Z.; Townshend, J.R.G.; Vogelmann, J. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. Int. J. Remote Sens. 2010, 31, 5449–5464. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Sun, L.; Liu, X.; Yang, Y.; Chen, T.; Wang, Q.; Zhou, X. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data. ISPRS J. Photogramm. Remote Sens. 2018, 138, 193–207. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 235–253. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- Joshi, P.P.; Wynne, R.H.; Thomas, V.A. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101898. [Google Scholar] [CrossRef]
- Li, W.; Sun, K.; Du, Z.; Hu, X.; Li, W.; Wei, J.; Gao, S. PCNet: Cloud Detection in FY-3D True-Color Imagery Using Multi-Scale Pyramid Contextual Information. Remote Sens. 2021, 13, 3670. [Google Scholar] [CrossRef]
- Ma, N.; Sun, L.; Zhou, C.; He, Y. PCNet: Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network. Remote Sens. 2021, 13, 3319. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Chen, J.; Jia, P.; Cao, X.; Liu, C. An Iterative Haze Optimized Transformation for Automatic Cloud/Haze Detection of Landsat Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2682–2694. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Collett, L.J.; Denham, R.J.; Flood, N.; Tindall, D. Cloud and cloud shadow screening across Queensland, Australia: An auto-mated method for Landsat TM/ETM+ time series. Remote Sens. Environ. 2013, 134, 50–65. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Homer, C.; Yang, L.; Xian, G.; Fry, J.; Danielson, P.; Townsend, P.A. Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA. Int. J. Remote Sens. 2013, 34, 1540–1560. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, B.-Y.; Lee, K.-Y.; Chen, Y.-C. Radiometric normalization and cloud detection of optical satellite images using invariant pixels. ISPRS J. Photogramm. Remote Sens. 2015, 106, 107–117. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing Information Reconstruction of Remote Sensing Data: A Technical Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Chen, J.; Zhu, X.; Shen, M. Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sens. Environ. 2020, 249, 112001. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS J. Photogramm. Remote Sens. 2020, 162, 148–160. [Google Scholar] [CrossRef]
- Luo, Y.; Trishchenko, A.; Khlopenkov, K. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 2008, 112, 4167–4185. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data by integrating spa-tiotemporal information with the Savitzky-Golay flter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, A.; Bernstein, L.; Anderson, G.; Acharya, P.; Robertson, D.; Chetwynd, J.; Adler-Golden, S. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Scmmuzza, P.; Micijevic, E.; Chander, G. SLC gap-filled products: Phase one methodology on USGS. Landsat Tech. Notes 2004. Available online: https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phase-one-methodology (accessed on 25 November 2021).
- Zhu, X.L.; Gao, F.; Liu, D. A Modifed Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.F.; Artigas, A.E.S.; Rountree, W.H.; Roger, J.-C. An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102253. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef] [Green Version]
Test Sites (Path/Row) | North China Plain (123/34) | Southeastern China (126/44) | Hang Zhou (119/39) | Tibetan Plateau (138/39) | |
---|---|---|---|---|---|
Cloud detection | Actual cloud image | 2017-05-23 | 2016-10-16 | 2016-04-22 | 2019-06-07 |
Reference image 1 (SSIM) | 2017-05-07 (0.898) | 2017-04-10 (0.678) | 2015-10-13 (0.779) | 2018-02-12 (0.641) | |
Reference image 2 (SSIM) | 2018-04-08 (0.739) | 2014-10-11 (0.656) | 2017-05-27 (0.731) | 2018-01-27 (0.599) | |
Image size | |||||
Cloud removal | Cloud-simulated image | 2016-05-04 | 2017-05-28 | 2014-05-23 | 2016-11-21 |
L8_Biome Site (Path/Row) | Center Latitude/Longitude | Image Date | Cloud Coverage |
---|---|---|---|
Barren_1 (P193/R45) | 22°4′ N/2°2′ E | 2013-05-06 | 64.06% |
Barren_2 (P 164/R60) | 15°6′ N/45°4′ E | 2013-06-28 | 7.33% |
Forest_1 (P175/R62) | 1°5′ S/25°0′ E | 2013-10-31 | 7.09% |
Forest_2 (P131/R18) | 61°50′ N/111°9′ E | 2013-04-18 | 5.44% |
Forest_3 (P20/R46) | 21°1′ N/90°2′ W | 2014-01-05 | 12.04% |
Forest_4 (P16/R50) | 15°6′ N/85°7′ W | 2014-02-10 | 49.59% |
Forest_5 (P229/R57) | 5°8′ N/56° W | 2014-05-21 | 53.70% |
Forest_6 (P07/R66) | 7°1′ S/76°8′ W | 2014-08-22 | 5.05% |
Grass/Crops_1 (P202/R52) | 12°9′ N/13°7′ W | 2013-05-21 | 17.15% |
Grass/Crops_2 (P175/R51) | 13°9′ N/28°6′ E | 2013-07-27 | 58.97% |
Grass/Crops_3 (P29/R37) | 42°4′ N/101°3′ W | 2013-09-14 | 32.41% |
Grass/Crops_4 (P98/R71) | 14°4′ S/141°0′ E | 2014-01-24 | 33.01% |
Shrubland_1 (P01/R73) | 17°9′ S/69°0′ W | 2013-04-19 | 6.71% |
Shrubland_2 (P32/R38) | 32°3′ N/106°9′ W | 2013-10-05 | 2.65% |
Shrubland_3 (P102/R80) | 131°9′ S/27°3′ E | 2014-04-10 | 76.28% |
Urban_1 (P177/R26) | 34°3′ N/49°9′ E | 2013-09-11 | 3.70% |
Urban_2 (P64/R45) | 22°8′ N/158°0′ W | 2014-02-10 | 3.06% |
Urban_3 (P162/R43) | 51°0′ N/25°0′ E | 2014-03-13 | 20.29% |
Water_1 (P215/R71) | 14°9′ S/39°8′ W | 2013-06-01 | 45.23% |
Water_2 (P162/R58) | 3°2′ N/46°0′ E | 2014-04-14 | 6.57% |
Water_3 (P113/R63) | 3°0′ S/120°0′ E | 2014-08-29 | 8.23% |
Wetland_1 (P101/R14) | 66°7′ N/161°6′ E | 2014-07-08 | 64.93% |
Sites | QA Band | Commission Error (%) | Omission Error (%) | F1-Score |
---|---|---|---|---|
North China Plain | QA_original | 20.2% | 5.9% | 86.3% |
ATSA | 24.2% | 1.6% | 85.6% | |
QA_SM (Reference 1) | 18.3% | 3.3% | 88.6% | |
QA_SM (Reference 2) | 18.2% | 3.5% | 88.6% | |
Southeastern China | QA_original | 10.6% | 8.1% | 90.6% |
ATSA | 11.8% | 3.0% | 92.4% | |
QA_SM (Reference 1) | 9.4% | 4.2% | 93.2% | |
QA_SM (Reference 2) | 9.6% | 4.4% | 92.9% | |
Hang Zhou | QA_original | 18.9% | 27.3% | 76.7% |
ATSA | 62.8% | 4.6% | 53.5% | |
QA_SM (Reference 1) | 16.3% | 17.9% | 82.9% | |
QA_SM (Reference 2) | 16.3% | 18.0% | 82.8% | |
Tibetan Plateau | QA_original | 11.3% | 5.0% | 91.7% |
ATSA | 5.3% | 20.0% | 86.7% | |
QA_SM (Reference 1) | 11.4% | 3.4% | 92.4% | |
QA_SM (Reference 2) | 11.4% | 3.3% | 92.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Feng, Y.; Chen, J.; Zhou, J. A Supplementary Module to Improve Accuracy of the Quality Assessment Band in Landsat Cloud Images. Remote Sens. 2021, 13, 4947. https://doi.org/10.3390/rs13234947
Cao R, Feng Y, Chen J, Zhou J. A Supplementary Module to Improve Accuracy of the Quality Assessment Band in Landsat Cloud Images. Remote Sensing. 2021; 13(23):4947. https://doi.org/10.3390/rs13234947
Chicago/Turabian StyleCao, Ruyin, Yan Feng, Jin Chen, and Ji Zhou. 2021. "A Supplementary Module to Improve Accuracy of the Quality Assessment Band in Landsat Cloud Images" Remote Sensing 13, no. 23: 4947. https://doi.org/10.3390/rs13234947
APA StyleCao, R., Feng, Y., Chen, J., & Zhou, J. (2021). A Supplementary Module to Improve Accuracy of the Quality Assessment Band in Landsat Cloud Images. Remote Sensing, 13(23), 4947. https://doi.org/10.3390/rs13234947