Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Image Processing
2.2. In Situ Spectrum Measurement
2.3. Methods
2.3.1. Sargassum Indexes as Traditional Methods
2.3.2. Machine Learning Models for Sargassum Detection
2.3.3. Performance Assessment
3. Results
3.1. In Situ Sargassum Spectrum
3.2. Sargassum Spectrum from GOCI-II
3.3. Traditional Methods and Machine Learning Models
4. Discussion
4.1. Comparison of Ocean Color Sensors
4.2. Limitations of Sargassum Indexes
4.3. Performance of Machine Learning Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, Z.M.; Uwai, S.; Yu, S.H.; Komatsu, T.; Duan, D.L. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations. Mol. Ecol. 2011, 20, 3894–3909. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ding, X.W.; Zhuang, M.M.; Wang, S.Y.; Chen, L.; Shen, H.; He, P.M. An increase in new Sargassum (Phaeophyceae) blooms along the coast of the East China Sea and Yellow Sea. Phycologia 2019, 58, 374–381. [Google Scholar] [CrossRef]
- Zhuang, M.; Liu, J.; Ding, X.; He, J.; Zhao, S.; Wu, L.; Gao, S.; Zhao, C.; Liu, D.; Zhang, J.; et al. Sargassum blooms in the East China Sea and Yellow Sea. Mar. Pollut. Bull. 2021, 162, 111845. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Wang, M.; Shang, S.; Wilson, C. Floating algae blooms in the East China Sea. Geophy. Res. Lett. 2017, 44, 11501–11509. [Google Scholar] [CrossRef]
- Press Release Provided by the Ministry of Oceans and Fisheries in Korea. Available online: https://www.korea.kr/news/pressReleaseView.do?newsId=156448342 (accessed on 30 October 2021).
- Webster, R.K.; Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 2013, 81, 1. [Google Scholar]
- Kim, K.; Shin, J.; Kim, K.Y.; Ryu, J.H. Long-term trend of green and golden tide in the eastern Yellow Sea. J. Coast. Res. 2019, SI90, 317–323. [Google Scholar] [CrossRef]
- Gower, J.F.R.; King, S.A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 2011, 32, 1917–1929. [Google Scholar] [CrossRef]
- Gower, J.; King, S. The distribution of pelagic Sargassum observed with OLCI. Int. J. Remote Sens. 2019, 41, 5669–5679. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. On the continuity of quantifying floating algae of the Central West Atlantic between MODIS and VIIRS. Int. J. Remote Sens. 2018, 39, 3852–3869. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Gower, J.; Hu, C.; Borstad, G.; King, S. Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3619–3625. [Google Scholar] [CrossRef]
- Gower, J.; King, S. Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat. Prec. 2008. [Google Scholar] [CrossRef]
- Gower, J.; Young, E.; King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Xing, Q.; Guo, R.; Wu, L.; An, D.; Cong, M.; Qin, S.; Li, X. High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea. IEEE Geosci. Remote Sens. Lett. 2017, 178, 113–126. [Google Scholar] [CrossRef]
- Hardy, R.F.; Hu, C.; Witherington, B.; Lapointe, B.; Meylan, A.; Peebles, E.; Meirose, L.; Hirama, S. Characterizing a sea turtle developmental habitat using Landsat observations of surface-pelagic drift communities in the eastern Gulf of Mexico. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3646–3659. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Hu, C.; Murch, B.; Barnes, B.B.; Wang, M.; Maréchal, J.P.; Franks, J.; Lapointe, B.E.; Goodwin, D.; Schell, J.; Siuda, A. Sargassum watch warns of incoming seaweed. Eos 2016, 97, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, C. Automatic Extraction of Sargassum Features from Sentinel-2 MSI Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2579–2597. [Google Scholar] [CrossRef]
- Kim, S.M.; Shin, J.; Baek, S.; Ryu, J.H. U-Net convolutional neural network model for deep red tide learning using GOCI. J. Coast. Res. 2019, SI90, 302–309. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Bilal, M.; Wang, S.; Sun, D.; Chen, Y. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: Case study of Yellow Sea using GOCI images. Opt. Express 2018, 26, 26810–26829. [Google Scholar] [CrossRef]
- Shin, J.; Kim, S.M.; Ryu, J.H. Machine learning approaches for quantifying Margalefidinium polykrikoides bloom from airborne hyperspectral imagery. J. Coast. Res. 2019, 90, 202–207. [Google Scholar] [CrossRef]
- Shin, J.; Jo, Y.H.; Ryu, J.H.; Khim, B.K.; Kim, S.M. High spatial red tide detection in the Southern Coast of Korea using U-Net from PlanetScope imagery. Sensors 2021, 21, 4447. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Qu, L.; Yu, C.; Sun, Y.; Gao, F.; Dong, J. Accurate Ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring. Neurocomputing 2019, 348, 158–168. [Google Scholar] [CrossRef]
- Minsky, M.; Papert, S.A. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Cuevas, E.; Uribe-Martínez, A.; Liceaga-Correa, M.D.L.Á. A satellite remote-sensing multi-index approach to discriminate pelagic Sargassum in the waters of the Yucatan Peninsula, Mexico. Int. J. Remote Sens. 2018, 39, 3608–3627. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, J.; Zhang, J.; Zhao, J.; Ye, F.; Wang, Z.; Liu, S. Automatic Extraction Method of Sargassum Based on Spectral-Texture Features of Remote Sensing Images. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2018. [Google Scholar]
- Arellano-Verdejo, J.; Lazcano-Hernandez, H.E.; Cabanillas-Terán, N. ERISNet: Deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. PeerJ 2019, 7, e6842. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H. A review of the yellow sea circulation models. Ocean Res. 1998, 20, 325–335. [Google Scholar]
- Hsueh, Y.; Romea, R.D.; Dewitt, P.W. Wintertime winds and coastal sealevel fluctuations in the northeast china sea. Part II: Numerical model. J. Phys. Oceanogr. 1986, 16, 241–261. [Google Scholar] [CrossRef] [Green Version]
- Naimie, C.E.; Blain, C.A.; Lynch, D.R. Seasonal mean circulation in the Yellow Sea—A model-generated climatology. Cont. Shelf Res. 2001, 21, 667–695. [Google Scholar] [CrossRef]
- Korea Hydrographic and Oceanographic Agency (KHOA). Available online: http://khoa.go.kr (accessed on 30 October 2021).
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Mikelsons, K.; Wang, M.; Lance, V.; Sun, S.; Barnes, B.B.; Zhao, J.; der Zande, D.V. In search of floating algae and other organisms in global oceans and lakes. Remote Sens. Environ. 2020, 239, 111659. [Google Scholar] [CrossRef]
- Korea Ocean Satellite Center (KOSC). Available online: http://kosc.kiost.ac.kr (accessed on 30 October 2021).
- U.S. Geological Survey. Available online: http://glovis.usgs.gov (accessed on 30 October 2021).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu (accessed on 30 October 2021).
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogram. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Min, S.H.; Hwang, J.D.; Oh, H.J.; Son, Y.B. Reflectivity characteristics of the green and golden tides from the Yellow Sea and East China Sea. J. Coast. Res. 2019, SI90, 310–316. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Chlus, A.; Russell, B. Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing. Remote Sens. Environ. 2015, 167, 247–258. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Freund, Y.; Schapire, R.; Abe, N. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Kohavi, R. Glossary of terms. Mach. Learn. 1998, 30, 127–132. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Johnsen, G.; Sakshaug, E. Bio optical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse amplitude-modulated and fast-repetition-rate fluorometry1. J. Phycol. 2007, 43, 1236–1251. [Google Scholar] [CrossRef]
- Beach, K.S.; Borgeas, H.B.; Nishimura, N.J.; Smith, C.M. In vivo absorbance spectra and the ecophysiology of reef macroalgae. Coral Reefs 1997, 16, 21–28. [Google Scholar] [CrossRef]
- Grzymski, J.; Johnsen, G.; Sakshaug, E. The significance of intracellular self-shading on the bio-optical properties of brown, red, and green macroalgae. J. Phycol. 1997, 33, 408–414. [Google Scholar] [CrossRef]
- Jo, Y.H.; Kim, D.W.; Kim, H. Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithms. J. Mar. Sci. 2018, 26, 102–110. [Google Scholar]
- Qi, L.; Hu, C. To what extent can Ulva and Sargassum be detected and separated in satellite imagery? Harmful Algae 2021, 103, 102001. [Google Scholar] [CrossRef]
- Hu, C.; He, M.X. Origin and offshore extent of floating algae in Olympic sailing area. Eos Trans. AGU 2008, 89, 302–303. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309. [Google Scholar]
- Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
Mission Characteristics | |
---|---|
Satellite | Geostationary KOMPSAT 2B (GK2B) |
Launch date | 18 February 2020 |
Orbit altitude | 35,768 km (Center location, 128.2°E) |
Mission lifetime | 10 years |
Spatial resolution | 250 m (Local area)/1 km (Global area) |
Temporal resolution | 1 h (Local, 10 times per day, 23 UTC~8 UTC), once per day (Global) |
Field of regard | Local (2500 km × 2500 km, Center: 130°E, 36°N) |
Slots | Local (12 slots, 2780 × 2780 pixels)/Global (235 slots) |
Spectral bands | 380–865 nm (12 bands) |
January 2021 | February 2021 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
FS | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | |||
G-II | v | v | v | v | v | v | ||||||||||||||||||
S2A | ||||||||||||||||||||||||
S2B | v | v | v | |||||||||||||||||||||
OLI-I | v | |||||||||||||||||||||||
OLI-II | v | v |
Model Types | |
---|---|
Decision Tree | Preset: Fine Tree Maximum number of splits: 100 Split criterion: Gini’s diversity index Training time: 10.79 s |
Support Vector Machine | Preset: Fine Gaussian SVM Kernel function: Gaussian Kernel scale: 0.87 Training time: 1914.36 s |
Ensemble classifier | Preset: Boosted Trees Ensemble method: GentleBoost Learner type: Decision tree Maximum number of splits: 20 Number of learners: 30 Learning rate: 0.1 Training time: 124.82 s |
Sargassum in Ground Truth | ||||
---|---|---|---|---|
Ture (sr) | False (nsr) | |||
Sargassum in the predicted maps | True (SR) | (1) True positive | (3) False positive | Precision (1)/[(1)+(3)] |
False (nSR) | (2) False negative | (4) True negative | ||
Sensitivity (1)/[(1)+(2)] |
(1) | (2) | (3) | (4) | Sens. | Prec. | F-Measure | ||
---|---|---|---|---|---|---|---|---|
Traditional methods | DVI | 3.5% | 29.8% | 13.9% | 52.8% | 10.5% | 20.2% | 0.14 |
SRG | 31.4% | 2.0% | 62.1% | 4.6% | 94.1% | 33.6% | 0.49 | |
SI | 7.5% | 25.8% | 18.8% | 47.9% | 22.5% | 28.5% | 0.25 | |
Machine learning models | Fine tree | 30.8% | 2.6% | 12.2% | 54.4% | 92.3% | 71.6% | 0.81 |
Fine Gaussian SVM | 33.0% | 0.4% | 12.5% | 54.1% | 98.9% | 72.5% | 0.84 | |
GentleBoost | 28.4% | 6.3% | 6.2% | 60.4% | 81.9% | 82.2% | 0.82 |
Sensor | Spatial Resolution (m) | Swath (km) | Revisit Period (per day) | Spectral Range (nm) |
---|---|---|---|---|
GOCI-II | 250 | 2500 | 10 times | 380–865 |
GOCI-I (not operation) | 500 | 2500 | 8 times | 412–865 |
OLCI | 300 | 1270 | 1–3 | 400–1020 |
MODIS | 1000 | 2330 | 1 | 405–877 |
VIIRS | 750 | 3000 | 1 | 412–1201 |
MERIS (not operation) | 300 | 1.15 | 3 | 390–1040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Lee, J.-S.; Jang, L.-H.; Lim, J.; Khim, B.-K.; Jo, Y.-H. Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery. Remote Sens. 2021, 13, 4844. https://doi.org/10.3390/rs13234844
Shin J, Lee J-S, Jang L-H, Lim J, Khim B-K, Jo Y-H. Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery. Remote Sensing. 2021; 13(23):4844. https://doi.org/10.3390/rs13234844
Chicago/Turabian StyleShin, Jisun, Jong-Seok Lee, Lee-Hyun Jang, Jinwook Lim, Boo-Keun Khim, and Young-Heon Jo. 2021. "Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery" Remote Sensing 13, no. 23: 4844. https://doi.org/10.3390/rs13234844
APA StyleShin, J., Lee, J. -S., Jang, L. -H., Lim, J., Khim, B. -K., & Jo, Y. -H. (2021). Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery. Remote Sensing, 13(23), 4844. https://doi.org/10.3390/rs13234844