Evaluation and Analysis of Poverty-Stricken Counties under the Framework of the UN Sustainable Development Goals: A Case Study of Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Localized SDG 1 Index System for Districts and Counties
2.3.2. Localized SDG 1 Evaluation Model for Districts and Counties Based on Multiple Linear Regression
2.3.3. Localized Evaluation Model for District- and County-Level SDG 1 Indicators Based on a Machine Learning Algorithm
3. Results
3.1. Results and Accuracy Verification of the Evaluation Model of Localized SDG 1 Indicators in Districts and Counties
3.2. Spatial Distribution Pattern of Localized SDG 1 Evaluation Values in Districts and Counties
3.3. Spatial Distribution Pattern of SDGs in Poverty-Stricken Counties in Hunan Province
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Zhou, Y.; Liu, Y. Targeted poverty alleviation and its practices in rural China: A case study of Fuping county, Hebei Province. J. Rural Stud. 2019. [Google Scholar] [CrossRef]
- Reid, A.J.; Brooks, J.L.; Dolgova, L.; Laurich, B.; Sullivan, B.G.; Szekeres, P.; Wood, S.L.; Bennett, J.; Cooke, S. Post-2015 Sustainable Development Goals still neglecting their environmental roots in the Anthropocene. Environ. Sci. Policy 2017, 77, 179–184. [Google Scholar] [CrossRef]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial progress in implementing the Sustainable Development Goals (SDGs): A review of evidence from countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Menton, M.; Larrea, C.; Latorre, S.; Martinez-Alier, J.; Peck, M.; Temper, L.; Walter, M. Environmental justice and the SDGs: From synergies to gaps and contradictions. Sustain. Sci. 2020, 15, 1621–1636. [Google Scholar] [CrossRef] [Green Version]
- Rosati, F.; Faria, L.G.D. Addressing the SDGs in sustainability reports: The relationship with institutional factors. J. Clean. Prod. 2019, 215, 1312–1326. [Google Scholar] [CrossRef]
- Janoušková, S.; Hák, T.; Moldan, B. Global SDGs Assessments: Helping or Confusing Indicators? Sustainability 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Dizdaroglu, D. The Role of Indicator-Based Sustainability Assessment in Policy and the Decision-Making Process: A Review and Outlook. Sustainability 2017, 9, 1018. [Google Scholar] [CrossRef] [Green Version]
- Pires, S.M.; Fidélis, T.; Ramos, T. Measuring and comparing local sustainable development through common indicators: Constraints and achievements in practice. Cities 2014, 39, 1–9. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Lowe, M.; Arundel, J. Achieving the SDGs: Evaluating indicators to be used to benchmark and monitor progress towards creating healthy and sustainable cities. Health Policy 2019, 124, 581–590. [Google Scholar] [CrossRef]
- Xu, X.; Kuang, Z.; Han, J.; Meng, Y.; Li, L.; Luan, H.; Xu, P.; Wang, J.; Luo, C.; Ding, H.; et al. Development and Characterization of a Fluorescent Probe for GLS1 and the Application for High-Throughput Screening of Allosteric Inhibitors. J. Med. Chem. 2019, 62, 9642–9657. [Google Scholar] [CrossRef]
- Dickens, C.; Smakhtin, V.; McCartney, M.; O’Brien, G.; Dahir, L. Defining and Quantifying National-Level Targets, Indicators and Benchmarks for Management of Natural Resources to Achieve the Sustainable Development Goals. Sustainability 2019, 11, 462. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.M.; Sharma, S.; Dubey, A.K. Developing an indicator set for measuring sustainable development in India. Nat. Resour. Forum 2018, 42, 185–200. [Google Scholar] [CrossRef]
- Mori, K.; Christodoulou, A. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environ. Impact Assess. Rev. 2012, 32, 94–106. [Google Scholar] [CrossRef]
- Fisher, A.; Fukuda-Parr, S. Introduction—Data, Knowledge, Politics and Localizing the SDGs. J. Hum. Dev. Capab. 2019, 20, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cheng, H.; Zhang, L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res. 2012, 49, 1253–1264. [Google Scholar] [CrossRef]
- Ma, L.; Che, X.; Zhang, J.; Fang, F.; Chen, M. Rural Poverty Identification and Comprehensive Poverty Assessment Based on Quality-of-Life: The Case of Gansu Province (China). Sustainability 2019, 11, 4547. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A. The Multidimensional Poverty Assessment Tool: A new framework for measuring rural poverty. Dev. Pract. 2010, 20, 887–897. [Google Scholar] [CrossRef]
- Caizhen, L. Who is poor in China? A comparison of alternative approaches to poverty assessment in Rural Yunnan. J. Peasant Stud. 2010, 37, 407–428. [Google Scholar] [CrossRef]
- Khan, A.U.; Saboor, A.; Hussain, A.; Sadiq, S.; Mohsin, A.Q. Poverty assessment as a multidimensional socio-economic concept: The case of the Rawalpindi region in Pakistan. Asia Pac. J. Soc. Work. Dev. 2014, 24, 238–250. [Google Scholar] [CrossRef]
- Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. J. Clean. Prod. 2020, 255, 120245. [Google Scholar] [CrossRef]
- Antoniades, A.; Widiarto, I.; Antonarakis, A.S. Financial crises and the attainment of the SDGs: An adjusted multidimensional poverty approach. Sustain. Sci. 2019, 15, 1683–1698. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Johnson, F.A.; Dearing, J.A.; Eigenbrod, F. Recent trends of human wellbeing in the Bangladesh delta. Environ. Dev. 2016, 17, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.-Q.; Yu, M.; Wang, X.-L. Poverty reduction within the framework of SDGs and Post-2015 Development Agenda. Adv. Clim. Chang. Res. 2015, 6, 67–73. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M.; et al. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 2019, 693, 133642. [Google Scholar] [CrossRef]
- Echendu, A.J. The impact of flooding on Nigeria’s sustainable development goals (SDGs). Ecosyst. Health Sustain. 2020, 6. [Google Scholar] [CrossRef]
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earths Futur. 2019, 7, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Biggeri, M.; Clark, D.A.; Ferrannini, A.; Mauro, V. Tracking the SDGs in an ‘integrated’ manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Dev. 2019, 122, 628–647. [Google Scholar] [CrossRef]
- Liu, H.; Leng, S.; He, C.; Peng, J.; Piao, S.; Wang, X. China’s road towards sustainable development: Geography bridges science and solution. Prog. Phys. Geogr. Earth Environ. 2019, 43, 694–706. [Google Scholar] [CrossRef]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Avtar, R.; Komolafe, A.A.; Kouser, A.; Singh, D.; Yunus, A.P.; Dou, J.; Kumar, P.; Das Gupta, R.; Johnson, B.A.; Minh, H.V.T.; et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 2020, 20, 100402. [Google Scholar] [CrossRef]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to implement SDGs and monitor their Progress. Environ. Monit. Assess. 2019, 192, 35. [Google Scholar] [CrossRef]
- Liverman, D.M. Geographic perspectives on development goals. Dialog Hum. Geogr. 2018, 8, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Im, J. Earth observations and geographic information science for sustainable development goals. GIScience Remote Sens. 2020, 57, 591–592. [Google Scholar] [CrossRef]
- Geng, W.; Chen, J.; Zhang, H.P.; Xu, K. Task and progress of IAEG-SDGS: WGGI in monitoring SDGS through a ‘geographic location’ lens. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Coscieme, L.; Anderson, S.J.; Sutton, P.C. Building Volume Per Capita (BVPC): A Spatially Explicit Measure of Inequality Relevant to the SDGs. Front. Sustain. Cities 2020, 2. [Google Scholar] [CrossRef]
- Wu, B.; Tian, F.; Zhang, M.; Zeng, H.; Zeng, Y. Cloud services with big data provide a solution for monitoring and tracking sustainable development goals. Geogr. Sustain. 2020, 1, 25–32. [Google Scholar] [CrossRef]
- Chen, J.; Peng, S.; Chen, H.; Zhao, X.; Ge, Y.; Li, Z. A Comprehensive Measurement of Progress toward Local SDGs with Geospatial Information: Methodology and Lessons Learned. ISPRS Int. J. Geo-Inf. 2020, 9, 522. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Chen, J. Measuring SDG 15 at the County Scale: Localization and Practice of SDGs Indicators Based on Geospatial Information. ISPRS Int. J. Geo-Inf. 2019, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Nagabhatla, N.; Brahmbhatt, R. Geospatial Assessment of Water-Migration Scenarios in the Context of Sustainable Development Goals (SDGs) 6, 11, and 16. Remote Sens. 2020, 12, 1376. [Google Scholar] [CrossRef]
- Solís, P.; McCusker, B.; Menkiti, N.; Cowan, N.; Blevins, C. Engaging global youth in participatory spatial data creation for the UN sustainable development goals: The case of open mapping for malaria prevention. Appl. Geogr. 2018, 98, 143–155. [Google Scholar] [CrossRef]
- Lucas, B.; Francu, R.E.; Goulding, J.; Harvey, J.; Nica-Avram, G.; Perrat, B. A Note on Data-driven Actor-differentiation and SDGs 2 and 12: Insights from a Food-sharing App. Res. Policy 2021, 50, 104266. [Google Scholar] [CrossRef]
- Molla, Y.B.; Rawlins, B.; Makanga, P.T.; Cunningham, M.; Ávila, J.E.H.; Ruktanonchai, C.W.; Singh, K.; Alford, S.; Thompson, M.; Dwivedi, V.; et al. Geographic information system for improving maternal and newborn health: Recommendations for policy and programs. BMC Pregnancy Childbirth 2017, 17, 26. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, M.; Acheampong, M.; Downs, J.; Majid, M.R. Poverty as a function of space: Understanding the spatial configuration of poverty in Malaysia for Sustainable Development Goal number one. GeoJournal 2018, 84, 1317–1336. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Li, G.; Chang, L.; Liu, X.; Su, S.; Cai, Z.; Huang, X.; Li, B. Monitoring the spatiotemporal dynamics of poor counties in China: Implications for global sustainable development goals. J. Clean. Prod. 2019, 227, 392–404. [Google Scholar] [CrossRef]
- Niu, T.; Chen, Y.; Yuan, Y. Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [Google Scholar] [CrossRef]
- Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.; De Montjoye, Y.-A.; Iqbal, A.M.; et al. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 2017, 14, 20160690. [Google Scholar] [CrossRef]
- Xu, Y.; Mo, Y.; Zhu, S. Poverty Mapping in the Dian-Gui-Qian Contiguous Extremely Poor Area of Southwest China Based on Multi-Source Geospatial Data. Sustainability 2021, 13, 8717. [Google Scholar] [CrossRef]
- Niu, S.; Lyu, X.; Gu, G.; Zhou, X.; Peng, W. Sustainable Intensification of Cultivated Land Use and Its Influencing Factors at the Farming Household Scale: A Case Study of Shandong Province, China. Chin. Geogr. Sci. 2021, 31, 109–125. [Google Scholar] [CrossRef]
- Ghasemkhani, N.; Vayghan, S.S.; Abdollahi, A.; Pradhan, B.; Alamri, A. Urban Development Modeling Using Integrated Fuzzy Systems, Ordered Weighted Averaging (OWA), and Geospatial Techniques. Sustainability 2020, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Liang, L.; Wang, Z.; Zhang, W.; Yu, J.; Liang, Y. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning. J. Geogr. Sci. 2020, 30, 705–723. [Google Scholar] [CrossRef]
- Han, Z.; Jiao, S.; Zhang, X.; Xie, F.; Ran, J.; Jin, R.; Xu, S. Seeking sustainable development policies at the municipal level based on the triad of city, economy and environment: Evidence from Hunan province, China. J. Environ. Manag. 2021, 290, 112554. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, L.-Y. Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Appl. Geogr. 2017, 90, 282–292. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Zhao, J.; Jiang, X.; Guo, R. A Geographical Analysis of the Poverty Causes in China’s Contiguous Destitute Areas. Sustainability 2018, 10, 1895. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Lopez-Ruiz, H.G.; Blazquez, J.; Hasanov, F. Estimating the Saudi Arabian Regional GDP Using Satellite Nighttime Light Images. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H. Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China. Remote Sens. 2020, 12, 3707. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2017, 18, 247–259. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Maparu, T.S.; Mazumder, T.N. Transport infrastructure, economic development and urbanization in India (1990–2011): Is there any causal relationship? Transp. Res. Part A Policy Pract. 2017, 100, 319–336. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI). Sensors 2021, 21, 4738. [Google Scholar] [CrossRef] [PubMed]
- Kingdon, G.G.; Knight, J. Subjective well-being povertyvs. Income poverty and capabilities poverty? J. Dev. Stud. 2006, 42, 1199–1224. [Google Scholar] [CrossRef]
- Rojas, M. Experienced Poverty and Income Poverty in Mexico: A Subjective Well-Being Approach. World Dev. 2008, 36, 1078–1093. [Google Scholar] [CrossRef]
- Whelan, C.T.; Layte, R.; Maître, B. Understanding the Mismatch between Income Poverty and Deprivation: A Dynamic Comparative Analysis. Eur. Sociol. Rev. 2004, 20, 287–302. [Google Scholar] [CrossRef]
- Gordon, E.; Henao, S.R.; Duque, A.Z.; Dolan-Evans, E. Power, poverty and peacebuilding: The violence that sustains inequalities and undermines peace in Colombia. Confl. Secur. Dev. 2020, 20, 697–721. [Google Scholar] [CrossRef]
- Benatar, S. Politics, Power, Poverty and Global Health: Systems and Frames. Int. J. Health Policy Manag. 2016, 5, 599–604. [Google Scholar] [CrossRef] [Green Version]
Global SDG 1 Indicator Framework | Localized SDG 1 Index for China | Localized SDG 1 Indicators for Districts and Counties |
---|---|---|
1. Proportion of the population living below the international poverty line by sex, age, employment status and geographic location (urban/rural) | 1. Incidence of poverty | 1. Incidence of poverty |
2. Proportion of population living below the national poverty line by sex and age | ||
3. Proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitions | 2. Percentage of urban residents with minimum living allowance in urban populations 3. Proportion of rural residents with minimum living security in rural populations 4. Proportion of urban and rural persons with disabilities included in the minimum living allowance in the total population | 2. Percentage of urban residents with minimum living allowance in urban populations 3. Proportion of rural residents with minimum living security in rural populations |
4. Proportion of population covered by social protection floors/systems by sex, distinguishing children, unemployed persons, older persons, persons with disabilities, pregnant women, newborns, work-based injury victims and persons who are poor and vulnerable | ||
5. Number of deaths, missing persons and persons directly affected by disasters per 100,000 persons | 5. Proportion of the population affected by natural disasters to the total population | 4. Disposable income of urban residents 5. Disposable income of rural residents |
6. Direct economic loss attributed to disasters in relation to global gross domestic product (GDP) | ||
7. Proportion of total government spending on essential services (education, health and social protection) |
Localized SDG 1 Indicators for Districts and Counties | Weight | Indicator Attributes |
---|---|---|
1. Incidence of poverty | 0.1379 | — |
2. Percentage of urban residents with minimum living allowance in urban populations | 0.1138 | — |
3. Proportion of rural residents with minimum living security in rural populations | 0.1895 | — |
4. Disposable income of urban residents | 0.1624 | + |
5. Disposable income of rural residents | 0.3964 | + |
Influencing Factor | Data | Characteristic Factor |
---|---|---|
Social economy | NPP-VIIRS Nighttime light image | Total logarithm of nighttime lights () |
Percentage of nighttime light area at night () | ||
Land cover | Land use data | Proportion of urban land area () |
Topography | SRTM DEM data | Mean elevation () |
Average slope () | ||
Traffic network | OSM road data | Road network density () |
Machine Learning Model | Parameter Type | Parameter Value |
---|---|---|
Regression tree; Model VI | Minimum leaf size | 12 |
Support vector machine; Model VII | Kernel function | Linear function |
Gaussian process regression; Model VIII | Kernel function | Matern 5/2 function |
Integrated tree; Model IX | Minimum leaf size | 8 |
Evaluation Model | R2 | RMSE |
---|---|---|
Model I | 0.76 | 0.10 |
Model II | 0.75 | 0.10 |
Model III | 0.57 | 0.13 |
Model IV | 0.74 | 0.11 |
Model V | 0.64 | 0.12 |
Model VI | 0.50 | 0.14 |
Model VII | 0.72 | 0.11 |
Model VIII | 0.73 | 0.11 |
Model IX | 0.68 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, M.; Huang, B.; Li, S.; Lin, Y. Evaluation and Analysis of Poverty-Stricken Counties under the Framework of the UN Sustainable Development Goals: A Case Study of Hunan Province, China. Remote Sens. 2021, 13, 4778. https://doi.org/10.3390/rs13234778
Wang Y, Wang M, Huang B, Li S, Lin Y. Evaluation and Analysis of Poverty-Stricken Counties under the Framework of the UN Sustainable Development Goals: A Case Study of Hunan Province, China. Remote Sensing. 2021; 13(23):4778. https://doi.org/10.3390/rs13234778
Chicago/Turabian StyleWang, Yanjun, Mengjie Wang, Bo Huang, Shaochun Li, and Yunhao Lin. 2021. "Evaluation and Analysis of Poverty-Stricken Counties under the Framework of the UN Sustainable Development Goals: A Case Study of Hunan Province, China" Remote Sensing 13, no. 23: 4778. https://doi.org/10.3390/rs13234778
APA StyleWang, Y., Wang, M., Huang, B., Li, S., & Lin, Y. (2021). Evaluation and Analysis of Poverty-Stricken Counties under the Framework of the UN Sustainable Development Goals: A Case Study of Hunan Province, China. Remote Sensing, 13(23), 4778. https://doi.org/10.3390/rs13234778