Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021
Abstract
:1. Introduction
2. Methods and Materials
2.1. Monthly Mean Background
2.2. Study Area
2.3. MBT Data
2.4. Auxiliary Data
3. Results
3.1. Spatiotemporal Features of the MBT Residuals
3.2. Time Series of Average Typical MBT Residuals
4. Analysis and Discussions
4.1. Analysis of the Influence of Soil Moisture
4.2. Time Series Analysis of MBT and Its Residuals
4.3. Analysis of the MBT Positive Anomalies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, P.Z.; Deng, Q.D.; Zhang, G.M.; Ma, J.; Gan, W.J.; Min, W.; Mao, F.Y.; Wang, Q. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Earth Sci. 2003, 46, 13–24. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.; Wang, M.; Gan, W.J.; Burgmann, R.; Molnar, P. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Xu, R.; Sarah, D.S. Present-day kinematics of the eastern Tibetan Plateau and Sichuan Basin: Implications for lower crustal rheology. J. Geophys. Res. Solid Earth 2016, 121, 3846–3866. [Google Scholar] [CrossRef]
- Chen, C.Y.; Ren, J.W.; Meng, G.J.; Yang, P.X.; Xiong, R.W.; Hu, C.Z.; Su, X.N.; Su, J.F. Division, deformation and tectonic implication of active blocks in the eastern segment of Bayan Har block. Chin. J. Geophys. 2013, 56, 4125–4141. [Google Scholar] [CrossRef]
- Wang, W.L.; Fang, L.H.; Wu, J.P.; Tu, H.W.; Chen, L.Y.; Lai, G.J.; Zhang, L. Aftershock sequence relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Sci. China Earth Sci. 2021, 64, 1371–1380. [Google Scholar] [CrossRef]
- Pan, J.W.; Bai, M.K.; Li, C.; Liu, F.C.; Li, H.B.; Liu, D.L.; Marie, L.; Wu, K.G.; Wang, P.; Lu, H.J.; et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 earthquake. Acta Geol. Sin. 2021, 95, 1655–1670. [Google Scholar] [CrossRef]
- Yin, X.X.; Wang, W.H.; Cai, R.; Deng, J.; Ma, L. Precise location of the 2021 Maduo, Qinghai Ms7.4 earthquake and its seismogenic structure. China Earthq. Eng. J. 2021, 43, 834–839. [Google Scholar]
- Zhan, Y.; Liang, M.J.; Sun, X.Y.; Huang, F.P.; Zhao, L.Q.; Gong, Y.; Han, J.; Li, C.X.; Zhang, P.Z.; Zhang, H.P. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake. Chin. J. Geophys. 2021, 64, 2232–2252. [Google Scholar] [CrossRef]
- Cross-Section of Slip Distribution of M7.3 Maduo Earthquake. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us7000e54r/finite-fault (accessed on 10 August 2021).
- Liu, J.H.; Hu, J.; Li, Z.W.; Ma, Z.F.; Wu, L.X.; Jiang, W.P.; Feng, G.C.; Zhu, J.J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2021, in press. [Google Scholar] [CrossRef]
- Hua, J.; Zhao, D.Z.; Shan, X.J.; Qu, C.Y.; Zhang, Y.F.; Gong, W.Y.; Wang, Z.J.; Li, C.L.; Li, Y.C.; Zhao, L.; et al. Coseismic deformation field, slip distribution and coulomb stress distribution of the 2021 Mw7.3 Maduo earthquake using sentinel-1 InSAR observations. Seismo. Geol. 2021, 43, 677–691. [Google Scholar] [CrossRef]
- Li, Z.C.; Ding, K.H.; Zhang, P.; Wen, Y.M.; Zhao, L.J.; Chen, J.F. Co-seismic deformation and slip distribution of 2021 Mw 7.4 Maduo earthquake from GNSS observation. Geom. Inf. Sci. Wuhan Univ. 2021, 46, 1489–1497. [Google Scholar] [CrossRef]
- Su, W.G.; Liu, L.; Yuan, F.Q.; Zhao, Y.H.; Sun, X.H. The anomaly characteristics of well water temperature in Yushu seismic station before the 2021 Maduo MS7.4 earthquake. Acta Geol. Sin. 2021, 43, 1–5. [Google Scholar] [CrossRef]
- Wang, S.Y.; Tian, H.; Ma, K.X.; Yu, C.; Ma, W.Y.; Yu, H.Z. Correlation between short-term and imminent anomalies of LURR and OLR before the Maduo Ms7.4 earthquake in Qinghai Province. China Earthq. Eng. J. 2021, 42, 847–852. [Google Scholar]
- Takashi, M.; Takano, T. Detection algorithm of earthquake-related rock failures from satellite-borne microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1768–1776. [Google Scholar]
- Chen, H.; Jin, Y.Q. A preliminary detection of anomalous radiation of rock failures related with Yushu earthquake by using satellite-borne microwave radiometers. Remote Sens. Technol. Appl. 2010, 25, 860–866. [Google Scholar] [CrossRef]
- Singh, R.P.; Mehdi, W.; Gautam, R.; Kumar, J.S.; Zlotnicki, J.; Kafatos, M. Precursory signals using satellite and ground data associated bwith the Wenchuan earthquake of 12 May 2008. Int. J. Remote Sens. 2010, 31, 3341–3354. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Shen, X. Land-atmosphere-meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Jing, F.; Singh, R.P.; Sun, K.; Shen, X. Passive microwave response associated with two main earthquakes in Tibetan Plateau, China. Adv. Space Res. 2018, 62, 1675–1689. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Cui, Y.; Sun, K. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan province, China. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, L.X.; He, M.; Mao, W.F. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly: May 2008 Wenchuan earthquake sequence being a case. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 382–391. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, L.X.; Mao, W.F.; Ding, Y.F.; He, M. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1903–1916. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, L.X.; Ding, Y.F.; Mao, W.F. Microwave Brightness Temperature Anomalies Associated with the 2015 Mw 7.8 Gorkha and Mw 7.3 Dolakha Earthquakes in Nepal. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Qi, Y.; Miao, Z.L.; Wu, L.X.; Ding, Y.F. Seismic Microwave Brightness Temperature Anomaly Detection Using Multitemporal Passive Microwave Satellite Images: Ideas and Limits. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 6792–6806. [Google Scholar] [CrossRef]
- Ding, Y.F.; Qi, Y.; Wu, L.; Mao, W.F.; Liu, Y.J. Discriminating the Multi-Frequency Microwave Brightness Temperature Anomalies Relating to 2017 Mw 7.3 Sarpol Zahab (Iran-Iraq Border) Earthquake. Front. Earth Sci. 2021, 706, 656216. [Google Scholar] [CrossRef]
- Ulaby, F.T.; David, L. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Prigent, C.; Aires, F.; Rossow, W.B. Land surface microwave emissivities over the globe for a decade. Bull. Am. Meteorol. Soc. 2006, 87, 1573–1584. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.M.; Wang, Y.F.; Zhang, X.H.; Zhong, B.; Ma, X.Y. Effects of cloud parameter on brightness temperature computation in microwave band. J. Appl. Meteo. Sci. 2016, 27, 380–384. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Boston, MA, USA, 1981. [Google Scholar]
- Xue, J.J. Characteristics of river silt in the Qaidam Basin, China. Arid Zone Res. 2001, 4, 44–46. [Google Scholar] [CrossRef]
- Zhang, Y.F. Knowledge of several basic characteristics of the geological structures in Qinghai. Tibetan Plateau Geol. Coll. 1982, 3, 17–27. [Google Scholar]
- Kang, W.H. The division and development of tectonic system of the Xizang area. Tibetan Plateau Geol. Coll. 1982, 175–190. [Google Scholar]
- 1:1 Million Spatial Databases of Geological Maps of the People’s Republic of China. Available online: http://dcc.ngac.org.cn/geologicalData/rest/geologicalData/geologicalDataDetail/402881f75d9bc10e015d9bc11be70000 (accessed on 14 July 2021).
- Chen, J.; Chen, J. GlobeLand30: Operational global land cover mapping and big-data analysis. Sci. China Earth Sci. 2018, 61, 1533–1534. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Kasahara, M.; Ito, N.; Oki, T. Instrument performance and calibration of AMSR-E and AMSR2. Int. Arch. Photog. Remote Sens. Spac. Inf. Sci. 2010, 38, 13–16. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Wu, L.X.; Zheng, S.; Liu, S.J. A deviation-time-space thermal (DTS-T) method for global Earth observation system of systems (GEOSS)-based earthquake anomaly recognition: Criterions and quantify indices. Remote Sens. 2013, 5, 5143–5151. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.Q. Remote Sensing Theory of Electromagnetic Scattering and Thermal Emission; Science Press: Beijing, China, 1993. [Google Scholar]
- Dai, L.C.; Ke, X.; Zhang, F.W.; Du, Y.G.; Li, Y.K.; Guo, X.W.; Li, Q.; Lin, L.; Cao, G.M. Characteristics of hydro-thermal coupling during soil freezing-thawing process in seasonally frozen soil regions on the Tibetan Plateau. J. Glaciol. Geocryol. 2020, 42, 390–398. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P. Sensitivity of Land Covers on Passive Microwave Brightness Temperature. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing SymposiumS, Yokohama, Japan, 28 July–2 August 2019; pp. 9569–9572. [Google Scholar]
- Luo, D.L.; Jin, H.J.; Lin, L.; He, R.X. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau. J. Glaciol. Geocryol. 2012, 34, 538–546. [Google Scholar]
- Freund, F. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys. 2010, 58, 719–766. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Mao, W.F.; Wu, L.X.; Liu, S.J.; Gao, X.; Huang, J.W.; Xu, Z.Y.; Qi, Y. Additional microwave radiation from experimentally loaded granite covered with sand layers: Features and mechanisms. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5008–5022. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.X.; Zheng, S.; Ma, W.Y. Discriminating satellite IR anomalies associated with the MS 7.1 Yushu earthquake in China. Adv. Space Res. 2018, 61, 1324–1331. [Google Scholar] [CrossRef]
- Kleidon, A. Thermodynamic Foundations of the Earth System; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
Location | Time (UTC) | Magnitude (Mw) | Lat, Lon | Depth (km) |
---|---|---|---|---|
Karakorum Mountain pass | 1996-11-19 | 6.9 | 35.35° N, 78.13° E | 33 |
Manyi | 1997-11-08 | 7.5 | 35.07° N 87.33° E | 33 |
western Kunlun Mountain | 2001-11-14 | 7.8 | 35.92° N 90.54° E | 10 |
Yutian | 2008-03-20 | 7.2 | 35.49° N 81.47° E | 10 |
Wenchuan | 2008-05-12 | 7.9 | 31.00° N 103.32° E | 19 |
Yushu | 2010-04-13 | 6.9 | 33.17° N 96.55° E | 17 |
Lushan | 2013-04-20 | 6.6 | 30.31° N 102.89° E | 14 |
Yutian | 2014-02-12 | 6.9 | 35.91° N 82.59° E | 10 |
Jiuzhaigou | 2017-08-08 | 6.5 | 33.19° N 103.86° E | 9 |
Maduo | 2021-05-21 | 7.3 | 34.60° N 98.25° E | 10 |
Parameter | Performance | |||||
---|---|---|---|---|---|---|
Time of available data | June 2012–present | |||||
Frequency (GHz) | 10.65 | 18.7 | 23.8 | 36.5 | 89.0 A | 89.0 B |
Polarization | H, V | |||||
Spatial resolution (km) | 50 | 25 | 25 | 15 | 5 | 5 |
IFOV (cross-track × along-track, km) | 42 × 24 | 22 × 14 | 26 × 15 | 12 × 7 | 5 × 3 | 5 × 3 |
Band width (MHz) | 100 | 200 | 400 | 1000 | 3000 | 3000 |
Swath width (km) | 1450 | |||||
NEΔT (K) | <0.7 | <0.7 | <0.6 | <0.7 | <1.2 | <1.2 |
Measuring range (K) | 2.7~340 | |||||
Incidence angle (°) | 55.0 | 55.0 | 55.0 | 55.0 | 55.0 | 54.5 |
Off-nadir angle (°) | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.0 |
Data | Product | Spatial Resolution | Temporal Resolution | Unit | Website |
---|---|---|---|---|---|
Elevation | SRTM-DEM | 90 m | / | meter | http://rmw.recordist.com/ (accessed on 9 July 2021) |
Geology | Geological map | 1:1 million | / | / | https://dcc.ngac.org.cn/ (accessed on 14 July 2021) |
Landcover | GlobeLand30 | 30 m | / | / | www.webmap.cn/ (accessed on 28 July 2021) |
Soil moisture | GLDA V.2.1 | 0.25° | 3 h | kg/m2 | https://disc.gsfc.nasa.gov/ (accessed on 27 July 2021) |
Precipitation | GLDA V.2.1 | 0.25° | 3 h | kg/m2 | https://disc.gsfc.nasa.gov/ (accessed on 27 July 2021) |
Air temperature | ERA5 | 0.1° | 1 h | K | https://cds.climate.copernicus.eu (accessed on 15 November 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Wu, L.; Ding, Y.; Liu, Y.; Chen, S.; Wang, X.; Mao, W. Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021. Remote Sens. 2021, 13, 4726. https://doi.org/10.3390/rs13224726
Qi Y, Wu L, Ding Y, Liu Y, Chen S, Wang X, Mao W. Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021. Remote Sensing. 2021; 13(22):4726. https://doi.org/10.3390/rs13224726
Chicago/Turabian StyleQi, Yuan, Lixin Wu, Yifan Ding, Yingjia Liu, Shuai Chen, Xiao Wang, and Wenfei Mao. 2021. "Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021" Remote Sensing 13, no. 22: 4726. https://doi.org/10.3390/rs13224726
APA StyleQi, Y., Wu, L., Ding, Y., Liu, Y., Chen, S., Wang, X., & Mao, W. (2021). Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021. Remote Sensing, 13(22), 4726. https://doi.org/10.3390/rs13224726