Validation of Multi-Year Galileo Orbits Using Satellite Laser Ranging
Abstract
:1. Introduction
2. Data and Methods
2.1. Availability of Orbital Products
- Centre National d’Etudes Spatiales—Collecte Localisation Satellites (CNES/CLS, France, ID GRM).
- Center for Orbit Determination in Europe (CODE, Switzerland, ID COM).
- GeoForschungsZentrum Potsdam (GFZ, Germany, ID GBM).
- Technische Universität München (TUM, Germany, ID TUM).
- Wuhan University (WU, China, ID WUM).
2.2. SLR Observation Status
2.3. Angular Argument Definitions
- 1.
- Solar elevation over the satellite orbital plane (β)—This term represents the elevation angle for the Sun–Earth connection with respect to the satellite orbital plane. In the Galileo system, β is a slow variable that completes approximately one cycle each year, but will reach its zero value twice from the positive and negative directions. When is less than the critical value , where RE is the radius of the Earth and r is the satellite orbital radius, the satellite will enter an eclipse season. During this period, part of the satellite orbital motion will experience a shadow from the Earth. This angle definition has been used in prior SRP models [24] and exhibits a maximum allowable range of [−23.5°, 23.5°].
- 2.
- The satellite–Sun elongation angle (γ)—This term describes the elongation of positions of the Earth and the Sun relative to the satellite. In this study, γ is a fast variable that completes approximately one cycle in each satellite orbital period. It is only approximate because the position of the Sun will change slightly during one satellite orbital period. This angle definition has been used in previous SRP models, such as the ROCK [26] and Box-Wing (BW) models [13] and it exhibits a maximum allowable range of [0°, 180°].
- 3.
- The argument of latitude (u)—This term denotes the angle between the satellite position and the ascending node of the satellite orbit. Here, u is a fast variable that completes exactly one 360° cycle in each satellite orbital period. This definition has been used in prior SRP models, such as ECOM [5].
- 4.
- The argument of satellite latitude relative to the Sun (Δu)—This argument is defined as the difference between the argument of latitude (u) of the satellite and the solar argument of latitude in the satellite orbital plane (u0). The angle Δu = u − 0 is a fast variable that completes approximately one 360° cycle in each satellite orbital period. This definition has been used in previous SRP models, such as ECOM2 [10]. The geometric meaning of each angle is represented in Figure 5.
3. Results and Disscusion
3.1. SLR Residuals for COM Orbits
3.2. SLR Residuals for GBM Orbits
3.3. Radial Differences in the COM and GBM Orbits
3.4. SLR Residuals Results for WUM, GRM, and TUM Orbits
3.5. Relationship between Orbital SLR Residuals and the Satellite–Sun Elongation Angle
3.6. Relationship between Orbital SLR Residuals on the Argument of Satellite Latitude
3.7. Dependence of Orbital SLR Residuals on the Local Time of Observation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Urschl, C.; Gurtner, W.; Hugentobler, U.; Schaer, S.; Beutler, G. Validation of GNSS Orbits Using SLR Observations. Adv. Space Res. 2005, 36, 412–417. [Google Scholar] [CrossRef]
- Urschl, C.; Beutler, G.; Gurtner, W.; Hugentobler, U.; Schaer, S. Contribution of SLR Tracking Data to GNSS Orbit Determination. Adv. Space Res. 2007, 39, 1515–1523. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P. Impact of Albedo Radiation on GPS Satellites. In Proceedings of the Geodesy for Planet Earth; Kenyon, S., Pacino, M.C., Marti, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 113–119. [Google Scholar]
- Beutler, G.; Brockmann, E.; Gurtner, W.; Hugentobler, U.; Mervart, L.; Rothacher, M.; Verdun, A. Extended Orbit Modeling Techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): Theory and Initial Results. Manuscr. Geod. 1994, 19, 367–386. [Google Scholar]
- Montenbruck, O.; Steigenberger, P.; Kirchner, G. GNSS Satellite Orbit Validation Using Satellite Laser Ranging. In Proceedings of the ILRS Workshop, Fujiyoshida, Japan, 11–15 November 2013. [Google Scholar]
- Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX Solution with the Focus on Galileo. Adv. Space Res. 2020, 66, 2786–2798. [Google Scholar] [CrossRef]
- Uhlemann, M.; Gendt, G.; Ramatschi, M.; Deng, Z. GFZ Global Multi-GNSS Network and Data Processing Results. In Proceedings of the IAG 150 Years; Rizos, C., Willis, P., Eds.; Springer International Publishing: Postdam, Germany, 2016; pp. 673–679. [Google Scholar]
- Montenbruck, O.; Steigenberger, P.; Khachikyan, R.; Weber, G.; Langley, R.B.; Mervart, L.; Hugentobler, U. IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science. Inside Gnss 2014, 9, 42–49. [Google Scholar]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s New Solar Radiation Pressure Model for GNSS Orbit Determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P. Adjustable Box-Wing Model for Solar Radiation Pressure Impacting GPS Satellites. Adv. Space Res. 2012, 49, 1113–1128. [Google Scholar] [CrossRef]
- Steigenberger, P.; Thoelert, S.; Montenbruck, O. GNSS Satellite Transmit Power and Its Impact on Orbit Determination. J. Geod. 2018, 92, 609–624. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hugentobler, U. Enhanced Solar Radiation Pressure Modeling for Galileo Satellites. J. Geod. 2015, 89, 283–297. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, Prospects and Challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise Orbit Determination for Quad-Constellation Satellites at Wuhan University: Strategy, Result Validation, and Comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Steigenberger, P.; Montenbruck, O. Consistency of MGEX Orbit and Clock Products. Engineering 2020, 6, 898–903. [Google Scholar] [CrossRef]
- Zajdel, R.; Sośnica, K.; Bury, G. A New Online Service for the Validation of Multi-GNSS Orbits Using SLR. Remote Sens. 2017, 9, 1049. [Google Scholar] [CrossRef] [Green Version]
- Sośnica, K.; Prange, L.; Kaźmierski, K.; Bury, G.; Drożdżewski, M.; Zajdel, R.; Hadas, T. Validation of Galileo Orbits Using SLR with a Focus on Satellites Launched into Incorrect Orbital Planes. J. Geod. 2018, 92, 131–148. [Google Scholar] [CrossRef]
- Steigenberger, P.; Montenbruck, O. Galileo Status: Orbits, Clocks, and Positioning. GPS Solut. 2017, 21, 319–331. [Google Scholar] [CrossRef]
- Männel, B. Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; p. 12977. [Google Scholar]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.-C. Zero-Difference GPS Ambiguity Resolution at CNES–CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Svehla, D. Complete Relativistic Modelling of the GIOVE-B Clock Parameters and Its Impact on POD, Track-Track Ambiguity Resolution and Precise Timing. Presented at the IGS Workshop, Newcastle, UK, 2 July 2010. [Google Scholar]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of Precise Orbit and Clock Products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 2017, 21, 279–290. [Google Scholar] [CrossRef]
- Springer, T.A.; Beutler, G.; Rothacher, M. A New Solar Radiation Pressure Model for GPS. Adv. Space Res. 1999, 23, 673–676. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S.; Perosanz, F.; Prange, L.; Dach, R.; Uhlemann, M.; Gendt, G.; Montenbruck, O. Galileo Orbit and Clock Quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Fliegel, H.F.; Gallini, T.E. Solar Force Modeling of Block IIR Global Positioning System Satellites. J. Spacecr. Rocket. 1996, 33, 863–866. [Google Scholar] [CrossRef]
- Selmke, I. IGSMAIL-7377, TUM MGEX. Available online: https://lists.igs.org/pipermail/igsmail/2016/001211.html (accessed on 28 November 2016).
- Katsigianni, G.; Loyer, S.; Perosanz, F.; Mercier, F.; Zajdel, R.; Sośnica, K. Improving Galileo Orbit Determination Using Zero-Difference Ambiguity Fixing in a Multi-GNSS Processing. Adv. Space Res. 2019, 63, 2952–2963. [Google Scholar] [CrossRef]
- Flohrer, C.; Springer, T.; Otten, M.; Garcia, S.C.; Dilssner, F.; Enderle, W.; Schonemann, E. Using SLR for GNSS orbit model validation. Presented at the ILRS Technical Workshop, Matera, Italy, 26–30 October 2015. [Google Scholar]
- Otsubo, T.; Appleby, G.M.; Gibbs, P. Glonass Laser Ranging Accuracy with Satellite Signature Effect. Surv. Geophys. 2001, 22, 509–516. [Google Scholar] [CrossRef]
PRN | Launch Date | Orbital Slot | Right Ascension (on 1 May 2013) | Right Ascension (on 1 May 2017) |
---|---|---|---|---|
E11 (IOV-1) | 21 October 2011 | B5 | 113.9° | 72.8° |
E12 (IOV-2) | 21 October 2011 | B6 | 113.9° | 72.8° |
E19 (IOV-3) | 12 October 2012 | C4 | 233.8° | 193.0° |
E20 (IOV-4) | 12 October 2012 | C5 | 233.7° | - |
E26 (FOC-3) | 27 March 2015 | B8 | - | 73.1° |
E22 (FOC-4) | 27 March 2015 | B3 | - | 73.1° |
E24 (FOC-5) | 11 September 2015 | A8 | - | 313.2° |
E30 (FOC-6) | 11 September 2015 | A5 | - | 313.2° |
AC | Time Boundary and Model Description | References |
---|---|---|
COM | Three stages Stage 1: ECOM model. From beginning to 4 January 2015. Stage 2: ECOM2 model. From 4 January 2015 to 6 August 2017. Stage 3: Models in Stage 2 + antenna thrust and Earth albedo model. Since 6 August 2017. | [10,17] |
WUM | Three stages Stage 1: ECOM model + along-tracking empirical constant acceleration bias. For IOV: From beginning to 4 January 2015. For FOC: From beginning to 31 October 2016. Stage 2: ECOM2 model + along-tracking empirical constant acceleration bias. For IOV: From 4 January 2015 to 10 September 2017. For FOC: From 31 October 2016 to 10 September 2017. Stage 3: Models in Stage 2 + antenna thrust and Earth albedo model. Since 10 September 2017. | [14,15] |
GRM | Two stages Stage 1: BW model. From beginning to 4 January 2015. Stage 2: BW + ECOM2 model. Since 4 January 2015. | [21,22] |
GBM | Two stages Stage 1: ECOM model. From beginning to 25 October 2016. Stage 2: BW + ECOM model. Since 25 October 2016. | [23,24] |
TUM | Two stages Stage 1: ECOM model. From beginning to 30 November 2016. Stage 2: BW + ECOM model. Since 30 November 2016. | [25,26] |
Site ID | Location Name | Country | Continent |
---|---|---|---|
7090 | Yarragadee | Australia | Oceania |
7105 | Greenbelt | USA | North America |
7110 | Monument Peak | USA | North America |
7237 | Changchun | China | Asia |
7406 | San Juan | Argentina | South America |
7501 | Hartebeesthoek | South Africa | Africa |
7810 | Zimmerwald | Switzerland | Europe |
7821 | Shanghai | China | Asia |
7825 | Mt. Stromlo | Australia | Oceania |
7839 | Graz | Austria | Europe |
7840 | Herstmonceux | United Kingdom | Europe |
7841 | Potsdam | Germany | Europe |
7941 | Matera | Italy | Europe |
8834 | Wettzell | Germany | Europe |
PRN | Duration | Total #np | Selected% | Monthly #np | Daytime% |
---|---|---|---|---|---|
E11 | 8.1 years | 39,663 | 86.8% | 355 | 39.14 |
E12 | 8.1 years | 46,457 | 86.1% | 412 | 36.32 |
E19 | 7.2 years | 36,351 | 86.1% | 364 | 36.16 |
E20 | 7.2 years | 36,456 | 86.6% | 367 | 36.92 |
E26 | 4.7 years | 13,647 | 87.3% | 213 | 27.66 |
E22 | 4.7 years | 11,906 | 87.0% | 185 | 27.61 |
E24 | 4.2 years | 12,415 | 83.5% | 207 | 28.07 |
E30 | 4.2 years | 11,639 | 81.6% | 190 | 27.19 |
PRN | Stage 1 | Stage 2 | Stage 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration (Day) | #np | Bias (cm) | STD (cm) | Duration (Day) | #np | Bias (cm) | STD (cm) | Duration (Day) | #np | Bias (cm) | STD (cm) | |
E11 | 905 | 12,970 | −5.7 | 8.5 | 946 | 11,177 | −4.2 | 3.5 | 857 | 5851 | −1.0 | 3.1 |
E12 | 928 | 13,173 | −5.8 | 8.3 | 931 | 10,123 | −4.4 | 3.5 | 882 | 12,287 | −1.4 | 2.7 |
E19 | 736 | 9916 | −5.4 | 7.4 | 937 | 11,332 | −4.3 | 3.8 | 880 | 9459 | −1.6 | 3.1 |
E20 | 471 | 7183 | −5.4 | 7.3 | - | - | - | - | - | - | - | - |
E26 | - | - | - | - | 728 | 5654 | −3.7 | 4.0 | 882 | 5865 | −0.4 | 2.7 |
E22 | - | - | - | - | 706 | 5807 | −3.8 | 4.5 | 133 | 914 | −0.2 | 2.6 |
E24 | - | - | - | - | 625 | 5358 | −4.1 | 4.1 | 882 | 4878 | −1.0 | 2.3 |
E30 | - | - | - | - | 636 | 4836 | −4.2 | 3.5 | 882 | 4636 | −0.8 | 2.9 |
Average | - | - | −5.6 | 7.9 | - | - | −4.1 | 3.8 | - | - | −0.9 | 2.8 |
PRN | Stage 1 | Stage 2 | ||||||
---|---|---|---|---|---|---|---|---|
Duration (Day) | #np | Bias (cm) | STD (cm) | Duration (Day) | #np | Bias (cm) | STD (cm) | |
E11 | 693 | 8078 | −0.5 | 8.2 | 1131 | 9155 | −0.9 | 2.7 |
E12 | 677 | 7224 | −1.0 | 7.7 | 1165 | 15,363 | −1.2 | 2.9 |
E19 | 678 | 8396 | −2.7 | 10.6 | 1163 | 12,754 | −1.6 | 2.8 |
E26 | 439 | 3252 | −2.1 | 8.8 | 1165 | 8210 | −0.2 | 2.7 |
E22 | 408 | 3071 | −2.0 | 9.3 | 410 | 3574 | −0.6 | 3.8 |
E24 | 329 | 2841 | −4.0 | 7.9 | 1161 | 7204 | −0.8 | 4.2 |
E30 | 338 | 2573 | −3.6 | 7.8 | 1164 | 6758 | −0.7 | 2.9 |
Average | - | - | −2.3 | 8.6 | - | - | −0.9 | 3.1 |
PRN | Segment 1 | Segment 2 | Segment 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Duration (Day) | Mean (cm) | STD (cm) | Duration (Day) | Mean (cm) | STD (cm) | Duration (Day) | Mean (cm) | STD (cm) | |
E11 | 691 | −4.8 | 8.1 | 285 | −3.7 | 3.8 | 845 | −0.1 | 2.1 |
E12 | 674 | −4.8 | 8.5 | 285 | −3.7 | 4.1 | 880 | −0.0 | 2.2 |
E19 | 676 | −4.4 | 11.1 | 285 | −3.0 | 3.4 | 876 | −0.1 | 2.5 |
E26 | 436 | −4.0 | 9.2 | 285 | −3.6 | 4.2 | 880 | 0.3 | 2.2 |
E22 | 403 | −3.6 | 9.7 | 285 | −3.5 | 4.8 | 125 | 1.1 | 3.3 |
E24 | 327 | −3.7 | 9.9 | 280 | −3.2 | 5.8 | 880 | 0.6 | 2.6 |
E30 | 337 | −3.8 | 9.1 | 284 | −3.2 | 3.2 | 880 | 0.6 | 2.2 |
Average | - | −4.2 | 9.4 | - | −3.4 | 4.2 | - | 0.3 | 2.4 |
PRN | Stage 1 | Stage 2 | Stage 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration (Day) | SLR Points | Mean (cm) | STD (cm) | Duration (Day) | SLR Points | Mean (cm) | STD (cm) | Duration (day) | SLR Points | Mean (cm) | STD (cm) | |
E11 | 319 | 4140 | −4.3 | 8.5 | 931 | 10,918 | −2.8 | 3.2 | 663 | 4412 | −1.0 | 3.5 |
E12 | 336 | 4000 | −4.8 | 8.3 | 910 | 9885 | −3.1 | 3.5 | 694 | 9711 | −1.3 | 3.1 |
E19 | 346 | 4302 | −4.2 | 7.8 | 919 | 11,147 | −2.8 | 3.9 | 694 | 7024 | −1.9 | 3.2 |
E20 | 145 | 1828 | −3.9 | 7.3 | - | - | - | - | - | - | - | - |
E26 | 409 | 3038 | −4.8 | 9.6 | 299 | 2416 | −3.4 | 3.3 | 690 | 4400 | 0.5 | 3.6 |
E22 | 378 | 2814 | −4.3 | 8.4 | 301 | 2764 | −3.8 | 3.1 | 81 | 582 | 0.1 | 2.0 |
E24 | 300 | 2562 | −6.7 | 7.8 | 292 | 2432 | −4.3 | 3.9 | 693 | 3639 | −0.1 | 2.4 |
E30 | 310 | 2351 | −6.4 | 8.3 | 300 | 2242 | −4.0 | 3.0 | 693 | 3606 | −0.1 | 3.2 |
Average | - | - | −4.9 | 8.3 | - | - | −3.5 | 3.4 | - | - | −0.5 | 3.0 |
PRN | Stage 1 | Stage 2 | ||||||
---|---|---|---|---|---|---|---|---|
Duration (Day) | SLR Points | Mean (cm) | STD (cm) | Duration (Day) | SLR Points | Mean (cm) | STD (cm) | |
E11 | 439 | 6639 | −4.1 | 14.0 | 1775 | 16,739 | −0.4 | 3.8 |
E12 | 430 | 6718 | −3.9 | 13.5 | 1791 | 22,161 | −0.6 | 3.5 |
E19 | 238 | 3582 | −3.0 | 11.3 | 1775 | 20,142 | −0.9 | 3.9 |
E20 | 209 | 3569 | −3.7 | 13.9 | - | - | - | - |
E26 | - | - | - | - | 1593 | 11,403 | 0.0 | 3.7 |
E22 | - | - | - | - | 827 | 6631 | −0.7 | 4.0 |
E24 | - | - | - | - | 1490 | 10,126 | −0.8 | 4.0 |
E30 | - | - | - | - | 1500 | 9321 | −0.6 | 4.4 |
Average | - | - | −3.7 | 13.2 | - | - | −0.6 | 3.9 |
PRN | Stage 1 | Stage 2 | ||||||
---|---|---|---|---|---|---|---|---|
Duration (Day) | SLR (Points) | Mean (cm) | STD (cm) | Duration (Day) | SLR (Points) | Mean (cm) | STD (cm) | |
E11 | 1454 | 18,211 | −5.0 | 8.9 | 869 | 7465 | −1.2 | 3.5 |
E12 | 1470 | 17,389 | −5.2 | 8.6 | 890 | 11,944 | −2.0 | 3.7 |
E19 | 1365 | 17,692 | −5.4 | 8.5 | 883 | 10,489 | −2.1 | 4.1 |
E20 | 413 | 6277 | −5.4 | 9.2 | - | - | - | - |
E26 | 485 | 3558 | −4.5 | 8.5 | 887 | 6630 | −0.5 | 3.7 |
E22 | 467 | 3487 | −4.4 | 9.3 | 355 | 3144 | −0.6 | 3.9 |
E24 | 384 | 3353 | −6.1 | 6.8 | 886 | 5661 | −1.0 | 4.0 |
E30 | 386 | 2985 | −5.8 | 6.9 | 887 | 5295 | −0.8 | 3.6 |
Average | - | - | −5.2 | 8.3 | - | - | −1.2 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, E.; Guo, N.; Xu, K.; Wang, B.; Zhou, X. Validation of Multi-Year Galileo Orbits Using Satellite Laser Ranging. Remote Sens. 2021, 13, 4634. https://doi.org/10.3390/rs13224634
Tao E, Guo N, Xu K, Wang B, Zhou X. Validation of Multi-Year Galileo Orbits Using Satellite Laser Ranging. Remote Sensing. 2021; 13(22):4634. https://doi.org/10.3390/rs13224634
Chicago/Turabian StyleTao, Enzhe, Nannan Guo, Kexin Xu, Bin Wang, and Xuhua Zhou. 2021. "Validation of Multi-Year Galileo Orbits Using Satellite Laser Ranging" Remote Sensing 13, no. 22: 4634. https://doi.org/10.3390/rs13224634
APA StyleTao, E., Guo, N., Xu, K., Wang, B., & Zhou, X. (2021). Validation of Multi-Year Galileo Orbits Using Satellite Laser Ranging. Remote Sensing, 13(22), 4634. https://doi.org/10.3390/rs13224634