Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard)
Abstract
:1. Introduction
2. Methods and Measurement Site
2.1. Lidar and Radiosonde Measurements
2.2. Retrieval of Cirrus Properties
2.3. Quality Assurance of Optical Properties
2.4. Measurement Site
3. Results
3.1. Cirrus Occurrence and Geometrical Properties
3.2. Meteorological Conditions
3.3. Cirrus Optical Properties
3.4. Inter-Relations of Cirrus Properties
3.5. Meteorological Dependence of Cirrus Properties
4. Discussion
5. Conclusions
- In winter and spring cirrus layers were geometrically-thicker, they occurred more frequently and their appeared lower compared to the rest of the year (Figure 2). The tropopause thermodynamic structure seemed to control the seasonality of cirrus altitude.
- Cirrus clouds were generally associated with colder and calmer wind conditions compared to the 2011–2020 climatology. Their majority was associated with westerly flow and westerly cirrus tended to be geometrically-thicker.
- The lidar ratio () in the ultraviolet spectral region (33 ± 9 sr) was in good agreement with a sub-Arctic study [27], while the in the visible region (42 ± 10 sr) was higher compared to lower latitudes. In winter, optically-thicker cirrus of lower LR were observed compared to the rest of the year (Figure 6 and Table A3). In summer and autumn the linear particle depolarization ratio (LPDR) was higher, indicating less spherical ice particles (Figure 6c). Overall, more spherical particles were inferred compared to lower latitudes.
- Overall, the LPDR and color ratio (CR) were found to be proportional (Figure 7a), reflecting a tendency of bigger ice particles being more spherical. Increased deposition of water vapor had most likely occurred on the surface of bigger particles, rendering their shape more spherical. Conversely, the cloud optical depth (COD) tended to be lower for less spherical and smaller ice particles (Figure 8) most likely due to reduced deposition of water vapor on the particle surface. The aforementioned relations were also investigated on a seasonal basis but no clear difference was found (Figure A1). These relations need to be investigated with respect to ice particle shape, aerosol load, air mass origin, cirrus formation mechanism, relative humidity over ice, vertical wind speed, and other parameters in order to gain a better understanding of the underlying physical processes. Such processes need to be investigated in the context of future case studies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Seasonal Cirrus Properties
Total | Winter | Spring | Summer | Autumn | |
---|---|---|---|---|---|
GT (km) | 2 ± 1.2 | 2.1 ± 1.4 | 2.1 ± 1.1 | 1.7 ± 0.9 | 1.4 ± 0.9 |
(km) | 7.1 ± 1.2 | 7.1 ± 1 | 6.7 ± 1.2 | 8.2 ± 0.7 | 8 ± 1.3 |
(km) | 9.5 ± 1.3 | 9.3 ± 1.6 | 9.4 ± 1.1 | 9.8 ± 0.6 | 9.2 ± 1 |
Total | Winter | Spring | Summer | Autumn | |
---|---|---|---|---|---|
Median temperature (C) | ± 6 | ± 5 | ± 5 | ± 4 | ± 3 |
Temperature at (C) | ± 6 | ± 7 | ± 5 | ± 3 | ± 4 |
Temperature at (C) | ± 7 | ± 6 | ± 6 | ± 5 | ± 3 |
Median wind speed () | 12 ± 6 | 23 ± 5 | 10 ± 4 | 9 ± 1 | 4 ± 9 |
Wind speed at () | 9 ± 6 | 18 ± 6 | 8 ± 4 | 9 ± 1 | 5 ± 8 |
Wind speed at () | 14 ± 7 | 28 ± 6 | 13 ± 4 | 9 ± 1 | 10 ± 9 |
Median wind direction () | 238 ± 85 | 243 ± 87 | 242 ± 77 | 57 ± 88 | 108 ± 216 |
Median wind sector | W/SW | W/SW | W/SW | E/NE | E/SE |
Total | Winter | Spring | Summer | Autumn | |
---|---|---|---|---|---|
0.1 ± 0.26 | 0.16 ± 0.39 | 0.09 ± 0.13 | 0.08 ± 0.07 | 0.1 ± 0.17 | |
Mean | 0.17 | 0.3 | 0.11 | 0.11 | 0.16 |
(sr) | 33 ± 9 | 31 ± 7 | 33 ± 9 | 37 ± 11 | 41 ± 9 |
(sr) | 42 ± 10 | 38 ± 9 | 43 ± 10 | 42 ± 13 | 43 ± 8 |
(%) | 15 ± 5 | 13 ± 5 | 14 ± 3 | 17 ± 6 | 22 ± 4 |
1.4 ± 0.2 | 1.3 ± 0.2 | 1.5 ± 0.2 | 1.3 ± 0.2 | 1.4 ± 0.1 |
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Wendisch, M.; Macke, A.; Ehrlich, A.; Lüpkes, C.; Mech, M.; Chechin, D.; Dethloff, K.; Velasco, C.B.; Bozem, H.; Brückner, M.; et al. The Arctic cloud puzzle: Using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in Arctic amplification. Bull. Am. Meteorol. Soc. 2019, 100, 841–871. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, X.; Bailey, D.A.; Holland, M.M.; Xi, B.; DuVivier, A.K.; Kay, J.E.; Landrum, L.L.; Deng, Y. Thicker clouds and accelerated Arctic sea ice decline: The atmosphere-sea ice interactions in spring. Geophys. Res. Lett. 2019, 46, 6980–6989. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Liu, G.; Li, J.L. Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Clim. 2016, 29, 7651–7674. [Google Scholar] [CrossRef]
- Lolli, S.; Campbell, J.R.; Lewis, J.R.; Gu, Y.; Marquis, J.W.; Chew, B.N.; Liew, S.C.; Salinas, S.V.; Welton, E.J. Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteorol. Climatol. 2017, 56, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Kienast-Sjögren, E.; Rolf, C.; Seifert, P.; Krieger, U.K.; Luo, B.P.; Krämer, M.; Peter, T. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements. Atmos. Chem. Phys. 2016, 16, 7605–7621. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.; Rolf, C.; Luebke, A.; Afchine, A.; Spelten, N.; Costa, A.; Meyer, J.; Zoeger, M.; Smith, J.; Herman, R.L.; et al. A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys. 2016, 16, 3463–3483. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Krämer, M.; Luebke, A.; Brown, P.; Cziczo, D.J.; Franklin, C.; Lawson, P.; Lohmann, U.; McFarquhar, G.; Ulanowski, Z.; et al. Cirrus clouds. Meteorol. Monogr. 2017, 58, 2.1–2.26. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Starr, D.O. Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. J. Atmos. Sci. 1995, 52, 4159–4182. [Google Scholar] [CrossRef] [Green Version]
- Ebell, K.; Nomokonova, T.; Maturilli, M.; Ritter, C. Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations. J. Appl. Meteorol. Climatol. 2020, 59, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Dahlke, S.; Maturilli, M. Contribution of atmospheric advection to the amplified winter warming in the Arctic North Atlantic region. Adv. Meteorol. 2017, 2017, 4928620. [Google Scholar] [CrossRef] [Green Version]
- Holz, R.E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; et al. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals. Atmos. Chem. Phys. 2016, 16, 5075–5090. [Google Scholar] [CrossRef] [Green Version]
- Marquis, J.W.; Bogdanoff, A.S.; Campbell, J.R.; Cummings, J.A.; Westphal, D.L.; Smith, N.J.; Zhang, J. Estimating infrared radiometric satellite sea surface temperature retrieval cold biases in the tropics due to unscreened optically thin cirrus clouds. J. Atmos. Ocean. Technol. 2017, 34, 355–373. [Google Scholar] [CrossRef]
- Campbell, J.R.; Dolinar, E.K.; Lolli, S.; Fochesatto, G.J.; Gu, Y.; Lewis, J.R.; Marquis, J.W.; McHardy, T.M.; Ryglicki, D.R.; Welton, E.J. Cirrus cloud top-of-the-atmosphere net daytime forcing in the Alaskan subarctic from ground-based MPLNET monitoring. J. Appl. Meteorol. Climatol. 2021, 60, 51–63. [Google Scholar] [CrossRef]
- Sassen, K.; Cho, B.S. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteorol. 1992, 31, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D. Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteorol. Climatol. 2011, 50, 645–661. [Google Scholar] [CrossRef]
- Nomokonova, T.; Ebell, K.; Löhnert, U.; Maturilli, M.; Ritter, C.; O’Connor, E. Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy. Atmo. Chem. Phys. 2019, 19, 4105–4126. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Devasthale, A.; Tjernstrã-M, M.; Karlsson, K.G.R.; Thomas, M.A.; Jones, C.; Sedlar, J.; Omar, A.H. The vertical distribution of thin features over the Arctic analysed from CALIPSO observations. Tellus Ser. B Chem. Phys. Meteorol. B 2011, 63, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Nakoudi, K.; Stachlewska, I.S.; Ritter, C. An extended lidar-based cirrus cloud retrieval scheme: First application over an Arctic site. Opt. Express 2021, 29, 8553–8580. [Google Scholar] [CrossRef]
- Hoffmann, A. Comparative Aerosol Studies Based on Multi-Wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen. Ph.D Thesis, Universität Potsdam, Potsdam, Germany, 2011. [Google Scholar]
- Campbell, J.; Vaughan, M.; Oo, M.; Holz, R.; Lewis, J.; Welton, E. Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech. 2015, 8, 435–449. [Google Scholar] [CrossRef] [Green Version]
- Maturilli, M. High resolution radiosonde measurements from station Ny-Ålesund (2017-04 et seq). PANGAEA 2020. [Google Scholar] [CrossRef]
- Massoli, P.; Maturilli, M.; Neuber, R. Climatology of Arctic polar stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen (79° N, 12° E). J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Gamage, N.; Hagelberg, C. Detection and analysis of microfronts and associated coherent events using localized transforms. J. Atmos. Sci. 1993, 50, 750–756. [Google Scholar] [CrossRef] [Green Version]
- Nakoudi, K.; Giannakaki, E.; Dandou, A.; Tombrou, M.; Komppula, M. Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. Atmos. Meas. Tech. 2019, 12, 2595–2610. [Google Scholar] [CrossRef] [Green Version]
- Voudouri, K.A.; Giannakaki, E.; Komppula, M.; Balis, D. Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. Atmos. Chem. Phys. 2020, 20, 4427–4444. [Google Scholar] [CrossRef] [Green Version]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef]
- Nakoudi, K.; Ritter, C. AWI Cirrus Cloud Retrieval Scheme (v1.0.0); Zenodo: Geneve, Switzerland, 2020. [Google Scholar] [CrossRef]
- Borovoi, A.; Balin, Y.; Kokhanenko, G.; Penner, I.; Konoshonkin, A.; Kustova, N. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar. Opt. Express 2014, 22, 24566–24573. [Google Scholar] [CrossRef]
- Okamoto, H.; Sato, K.; Borovoi, A.; Ishimoto, H.; Masuda, K.; Konoshonkin, A.; Kustova, N. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications. Opt. Express 2020, 28, 29178–29191. [Google Scholar] [CrossRef]
- Maturilli, M.; Herber, A.; König-Langlo, G. Surface radiation climatology for Ny-Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor. Appl. Climatol. 2015, 120, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Eloranta, E. Practical model for the calculation of multiply scattered lidar returns. Appl. Opt. 1998, 37, 2464–2472. [Google Scholar] [CrossRef]
- Jocher, G.; Schulz, A.; Ritter, C.; Neuber, R.; Dethloff, K.; Foken, T. The sensible heat flux in the course of the year at Ny-Ålesund, svalbard: Characteristics of eddy covariance data and corresponding model results. Adv. Meteorol. 2015, 2015, 852108. [Google Scholar] [CrossRef]
- Rader, F.; Traversi, R.; Severi, M.; Becagli, S.; Müller, K.J.; Nakoudi, K.; Ritter, C. Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere 2021, 12, 271. [Google Scholar] [CrossRef]
- Maturilli, M.; Kayser, M. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Climatol. 2017, 130, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Walczowski, W.; Piechura, J. Influence of the West Spitsbergen Current on the local climate. Int. J. Climatol. 2011, 31, 1088–1093. [Google Scholar] [CrossRef]
- Gjelten, H.M.; Nordli, Ø.; Isaksen, K.; Førland, E.J.; Sviashchennikov, P.N.; Wyszynski, P.; Prokhorova, U.V.; Przybylak, R.; Ivanov, B.V.; Urazgildeeva, A.V. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res. 2016, 35, 29878. [Google Scholar] [CrossRef]
- Yeo, H.; Park, S.J.; Kim, B.M.; Shiobara, M.; Kim, S.W.; Kwon, H.; Kim, J.H.; Jeong, J.H.; Park, S.S.; Choi, T. The observed relationship of cloud to surface longwave radiation and air temperature at Ny-Ålesund, Svalbard. Tellus B Chem. Phys. Meteorol. 2018, 70, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nazaryan, H.; McCormick, M.P.; Menzel, W.P. Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Sassen, K.; Campbell, J.R. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci. 2001, 58, 481–496. [Google Scholar] [CrossRef]
- Wang, W.; Yi, F.; Liu, F.; Zhang, Y.; Yu, C.; Yin, Z. Characteristics and Seasonal Variations of Cirrus Clouds from Polarization Lidar Observations at a 30° N Plain Site. Remote Sens. 2020, 12, 3998. [Google Scholar] [CrossRef]
- Gierens, R.; Kneifel, S.; Shupe, M.D.; Ebell, K.; Maturilli, M.; Löhnert, U. Low-level mixed-phase clouds in a complex Arctic environment. Atmos. Chem. Phys. 2020, 20, 3459–3481. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, B.; Groß, S.; Wirth, M.; Rolf, C.; Krämer, M.; Voigt, C. High depolarization ratios of naturally occurring cirrus clouds near air traffic regions over Europe. Geophys. Res. Lett. 2018, 45, 13–166. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Comstock, J.M. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties. J. Atmos. Sci. 2001, 58, 2113–2127. [Google Scholar] [CrossRef]
- Wang, Z.; Sassen, K. Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties. J. Atmos. Sci. 2002, 59, 2291–2302. [Google Scholar] [CrossRef]
- Sunilkumar, S.V.; Parameswaran, K. Temperature dependence of tropical cirrus properties and radiative effects. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Gouveia, D.A.; Barja, B.; Barbosa, H.M.; Seifert, P.; Baars, H.; Pauliquevis, T.; Artaxo, P. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements. Atmos. Chem. Phys. 2017, 17, 3619–3636. [Google Scholar] [CrossRef] [Green Version]
- Corti, T.; Peter, T. A simple model for cloud radiative forcing. Atmos. Chem. Phys. 2009, 9, 5751–5758. [Google Scholar] [CrossRef] [Green Version]
- Pandit, A.K.; Gadhavi, H.; Venkat Ratnam, M.; Raghunath, K.; Rao, S.; Jayaraman, A. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India. Atmos. Chem. Phys. 2015, 15, 13833–13848. [Google Scholar] [CrossRef] [Green Version]
- Krämer, M.; Rolf, C.; Spelten, N.; Afchine, A.; Fahey, D.; Jensen, E.; Khaykin, S.; Kuhn, T.; Lawson, P.; Lykov, A.; et al. A microphysics guide to cirrus—Part 2: Climatologies of clouds and humidity from observations. Atmos. Chem. Phys. 2020, 20, 12569–12608. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and optical depth retrievals for CALIPSO’s Version 4 data release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Josset, D.; Pelon, J.; Garnier, A.; Hu, Y.; Vaughan, M.; Zhai, P.W.; Kuehn, R.; Lucker, P. Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Del Guasta, M.; Morandi, M.; Stefanutti, L.; Brechet, J.; Piquad, J. One year of cloud lidar data from Dumont d’Urville (Antarctica): 1. General overview of geometrical and optical properties. J. Geophys. Res. Atmos. 1993, 98, 18575–18587. [Google Scholar] [CrossRef]
- Del Guasta, M. Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of “face tracing”. J. Geophys. Res. Atmos. 2001, 106, 12589–12602. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Zhu, J. A global survey of CALIPSO linear depolarization ratios in ice clouds: Initial findings. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Ohneiser, K.; Ansmann, A.; Chudnovsky, A.; Engelmann, R.; Ritter, C.; Veselovskii, I.; Baars, H.; Gebauer, H.; Griesche, H.; Radenz, M.; et al. The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020. Atmos. Chem. Phys. 2021, 21, 15783–15808. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Barker, H.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakoudi, K.; Ritter, C.; Stachlewska, I.S. Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard). Remote Sens. 2021, 13, 4555. https://doi.org/10.3390/rs13224555
Nakoudi K, Ritter C, Stachlewska IS. Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard). Remote Sensing. 2021; 13(22):4555. https://doi.org/10.3390/rs13224555
Chicago/Turabian StyleNakoudi, Konstantina, Christoph Ritter, and Iwona S. Stachlewska. 2021. "Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard)" Remote Sensing 13, no. 22: 4555. https://doi.org/10.3390/rs13224555
APA StyleNakoudi, K., Ritter, C., & Stachlewska, I. S. (2021). Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard). Remote Sensing, 13(22), 4555. https://doi.org/10.3390/rs13224555