Simulating the Response of the Surface Urban Heat Environment to Land Use and Land Cover Changes: A Case Study of Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Model and Data
2.2.1. u-HRLDAS Model
2.2.2. Forcing Data Sets
2.2.3. Remotely Sensed Data
2.3. Experiment Design
2.4. Evaluation Metrics
3. Results and Analysis
3.1. Model Simulations with Different Setups
3.1.1. The Effect of the Spin-Up Period
3.1.2. The Effect of the Model Time Step Size
3.1.3. The Effect of LULC and Parameters Adjustment
3.1.4. The Evaluation of Model Simulated LST and UHI
3.2. The Response of the Urban Heat Environment to LULC Changes
3.2.1. Temporal Analysis
3.2.2. Spatial Analysis
3.3. The Reason Why Changes in LULC Alter the Heat Environment of Wuhan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridgeshire, UK, 2017. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Xian, G.; Shi, H.; Auch, R.; Gallo, K.; Zhou, Q.; Wu, Z.; Kolian, M. The effects of urban land cover dynamics on urban heat Island intensity and temporal trends. GIScience Remote Sens. 2021, 58, 501–515. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Menberg, K.; Bayer, P.; Zosseder, K.; Rumohr, S.; Blum, P. Subsurface urban heat islands in German cities. Sci. Total Environ. 2013, 442, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Huang, X.; Yang, J.; Liu, Y. The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers. Environ. Res. Lett. 2021, 16, 024032. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E.; Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 2014, 9, 055002. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Gao, M.; Chen, F.; Shen, H.; Li, H. A tale of two cities: Different urban heat mitigation efficacy with the same strategies. Theor. Appl. Clim. 2020, 142, 1625–1640. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nat. Cell Biol. 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Zhu, J.; Wang, Y.; Skorokhod, A. Modeling Impacts of Urbanization and Urban Heat Island Mitigation on Boundary Layer Meteorology and Air Quality in Beijing Under Different Weather Conditions. J. Geophys. Res. Atmos. 2018, 123, 4323–4344. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Guo, X.; Niu, Z.; Liu, H. Investigation of Urbanization Effects on Land Surface Phenology in Northeast China during 2001–2015. Remote Sens. 2017, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Shen, H.; Han, X.; Chen, W. Numerical simulation of diurnal variation of urban land surface temperature based on CLM4.5. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 183–187. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An Observational and Modeling Study of Characteristics of Urban Heat Island and Boundary Layer Structures in Beijing. J. Appl. Meteorol. Clim. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Jackson, T.L.; Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Bauer, J.T. Parameterization of Urban Characteristics for Global Climate Modeling. Ann. Assoc. Am. Geogr. 2010, 100, 848–865. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, S.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Clim. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Oleson, K.W.; Bonan, G.B.; Feddema, J.; Jackson, T. An examination of urban heat island characteristics in a global climate model. Int. J. Clim. 2011, 31, 1848–1865. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Brunsell, N.A.; Monaghan, A.J.; Barlage, M.; Wilhelmi, O.V. How can we use MODIS land surface temperature to validate long-term urban model simulations? J. Geophys. Res. Atmos. 2014, 119, 3185–3201. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Manning, K.W.; Yates, D.N.; LeMone, M.A.; Trier, S.B.; Cuenca, R.; Niyogi, D. Development of high resolution land data assimilation system and its application to WRF. In Proceedings of the 16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Grimmond, C.S.B.; Blackett, M.; Best, M.; Barlow, J.; Baik, J.-J.; Belcher, S.E.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Dandou, A.; et al. The International Urban Energy Balance Models Comparison Project: First Results from Phase 1. J. Appl. Meteorol. Clim. 2010, 49, 1268–1292. [Google Scholar] [CrossRef]
- Chen, F.; Manning, W.J.; LeMone, M.A.; Trier, S.B.; Alfieri, J.G.; Roberts, R.; Tewari, M.; Niyogi, D.; Horst, T.W.; Oncley, S.P.; et al. Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System. J. Appl. Meteorol. Clim. 2007, 46, 694–713. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Zhang, C.; Miao, S.; Chen, F. Localization and validation of an urbanized high-resolution land data assimilation system (u-HRLDAS). Sci. China Earth Sci. 2013, 56, 1071–1078. [Google Scholar] [CrossRef]
- Gao, M.; Chen, F.; Shen, H.; Barlage, M.; Li, H.; Tan, Z.; Zhang, L. Efficacy of Possible Strategies to Mitigate the Urban Heat Island Based on Urbanized High-Resolution Land Data Assimilation System (u-HRLDAS). J. Meteorol. Soc. Jpn. 2019, 97, 1075–1097. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci. 2017, 21, 5805–5821. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, Z.-H.; Georgescu, M.; Chen, F.; Tewari, M. Assessing the Impact of Enhanced Hydrological Processes on Urban Hydrometeorology with Application to Two Cities in Contrasting Climates. J. Hydrometeorol. 2016, 17, 1031–1047. [Google Scholar] [CrossRef]
- Doan, V.Q.; Kusaka, H.; Nguyen, T.M. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustain. Cities Soc. 2019, 47, 101479. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Peng, H.; Wang, H.; Shen, J. The impact of building configurations and anthropogenic heat on daily urban air temperature cycles. Build. Environ. 2020, 169, 106564. [Google Scholar] [CrossRef]
- Chen, R.; Yang, M.; Wang, X.; Wan, G. Review on simulation of land-surface processes on the Tibetan Plateau. Sci. Cold Arid. Reg. 2019, 11, 93–115. [Google Scholar]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Chen, F.; Gan, Y. Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos. 2016, 121, 9576–9596. [Google Scholar] [CrossRef]
- Liu, M.; Tang, R.; Li, Z.-L.; Yan, G. Integration of two semi-physical models of terrestrial evapotranspiration using the China Meteorological Forcing Dataset. Int. J. Remote Sens. 2018, 40, 1966–1980. [Google Scholar] [CrossRef]
- Xinliang, X.; Jiyuan, L.; Shuwen, Z.; Rednong, L.; Changzhen, Y.; Shixin, W. China Land Use and Land Cover Change Database (CNLUCC). Data Center for Resources and Environmental Sciences. Chinese Academy of Sciences. 2018. Available online: http://www.resdc.cn (accessed on 20 September 2021).
- Jiyuan, L.; Wenhui, K.; Zengxiang, Z.; Xinliang, X. Spatiaotemporal characteristics, patterns and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 69, 3–14. [Google Scholar]
- Xu, C.; Jiang, W.; Huang, Q.; Wang, Y. Ecosystem services response to rural-urban transitions in coastal and island cities: A comparison between Shenzhen and Hong Kong, China. J. Clean. Prod. 2020, 260, 121033. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Su, F. Impacts of Urbanization on the Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2020, 12, 3269. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Gao, Y.; Li, K.; Chen, F.; Jiang, Y.; Lu, C. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 9258–9278. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, H.; Li, H.; Cheng, Q. Long-term urban impervious surface monitoring using spectral mixture analysis: A case study of Wuhan city in China. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6754–6757. [Google Scholar]
Case | Spin-Up Period | Time Step | LULC | Parameters 1 | Purpose |
---|---|---|---|---|---|
CMFD-1M | 1 month | 120 s | Default | Default | To test the effect of the spin-up time, compared with CMFD-48M |
CMFD-2M | 2 months | 120 s | Default | Default | |
CMFD-4M | 4 months | 120 s | Default | Default | |
CMFD-6M | 6 months | 120 s | Default | Default | |
CMFD-12M | 12 months | 120 s | Default | Default | |
CMFD-24M | 24 months | 120 s | Default | Default | |
CMFD-36M | 36 months | 120 s | Default | Default | |
CMFD-48M | 48 months | 120 s | Default | Default | |
CMFD-6M-600s | 6 months | 600 s | Default | Default | To test the effect of the size of the time steps, compared with CMFD-6M |
CMFD-6M-1800s | 6 months | 1800 s | Default | Default | |
CMFD-6M-LULC | 6 months | 120 s | ULULC | Default | To test the effect of accurate land cover, compared with CMFD-6M |
CMFD-6M-PAR | 6 months | 120 s | ULULC | Update | To test the effect of parameters setup, compared with CMFD-6M-LULC |
Parameters | Update (Low-Residence, High-Residence, Commercial) | Default (Low-Residence, High-Residence, Commercial) |
---|---|---|
Building height (m) | 8, 15, 25 | 5, 7.5, 10 |
Anthropogenic heat (W/m2) | 10, 20, 30 | 20, 50, 90 |
Irrigation | On | Off |
Roof albedo | 0.3, 0.3, 0.3 | 0.2, 0.2, 0.2 |
Wall albedo | 0.3, 0.3, 0.3 | 0.2, 0.2, 0.2 |
Road albedo | 0.3, 0.3, 0.3 | 0.2, 0.2, 0.2 |
Urban fraction in each grid | The impervious fraction of each 1 km grid based on Landsat 30 m data | 0.5, 0.9, 0.95 |
Land cover | Updated based on Landsat 8 in 2013 and CNLUCC in 2010 | Generated by WRF-WPS based on the original 500 m MODIS LULC |
Case | Simulation Description | Purpose |
---|---|---|
CNTL | Control case, the same as CMFD-6M-PAR | To explore the response of the urban heat environment to LULC changes |
LULC1980 | Same as CNTL, but the LULC was replaced by the CNLUCC in 1980. | |
LULC1990 | Same as CNTL, but the LULC was replaced by the CNLUCC in 1990. | |
LULC2000 | Same as CNTL, but the LULC was replaced by the CNLUCC in 2000. |
Data Source | The Maximum of LST (K) | The Minimum of LST (K) | The Mean of LST (K) |
---|---|---|---|
MODIS | 324.0 | 275.0 | 301.4 |
CMFD-6M | 320.5 | 284.4 | 301.9 |
CMFD-6M-600s | 349.4 | 284.4 | 302.0 |
CMFD-6M-1800s | 398.6 | 284.4 | 302.0 |
Land Cover | LULC1980 | LULC1990 | LULC2000 | CNTL |
---|---|---|---|---|
Forest | 305.00 | 305.00 | 305.01 | 305.00 |
Grassland | 305.64 | 305.59 | 305.60 | 305.54 |
Wetland | 303.19 | 303.15 | 303.09 | 303.12 |
Cropland | 304.59 | 304.59 | 304.58 | 304.54 |
Bare land | 305.94 | 305.85 | 305.85 | 305.82 |
Urban | 305.25 | 305.39 | 305.56 | 305.80 |
Average | 304.68 | 304.72 | 304.75 | 304.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Li, Z.; Tan, Z.; Liu, Q.; Shen, H. Simulating the Response of the Surface Urban Heat Environment to Land Use and Land Cover Changes: A Case Study of Wuhan, China. Remote Sens. 2021, 13, 4495. https://doi.org/10.3390/rs13224495
Gao M, Li Z, Tan Z, Liu Q, Shen H. Simulating the Response of the Surface Urban Heat Environment to Land Use and Land Cover Changes: A Case Study of Wuhan, China. Remote Sensing. 2021; 13(22):4495. https://doi.org/10.3390/rs13224495
Chicago/Turabian StyleGao, Meiling, Zhenhong Li, Zhenyu Tan, Qi Liu, and Huanfeng Shen. 2021. "Simulating the Response of the Surface Urban Heat Environment to Land Use and Land Cover Changes: A Case Study of Wuhan, China" Remote Sensing 13, no. 22: 4495. https://doi.org/10.3390/rs13224495