Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Satellite Data
2.3. Ground Data
3. Methodology
3.1. Satellite Data Preprocessing
3.2. Land Cover/Land Use (LULC) Mapping
3.3. Surface Urban Heat Island (SUHI) Mapping
3.4. Urban Thermal Filed Variance Index (UTFVI) Mapping
4. Results
4.1. Decadal LULC, SUHI, and UTFVI
4.1.1. Relationship between SUHI and LULC
4.1.2. Relationship between UTFVI and LULC
4.2. Intra-Annual Variation of SUHI
4.3. Relationship between SUHI and AP
5. Discussion
6. Conclusions
- ✔
- The generated LULC maps indicated that the simultaneous loss of GS areas along with the expansion of BU areas have contributed toward SUHI intensification by an average of 2.02 °C over the last three decades.
- ✔
- The seasonal SUHI investigations revealed that the summer had the highest SUHI magnitude and footprint in Tehran.
- ✔
- The UTFVI analysis revealed that the thermal comfort condition of Tehran has been significantly degraded since 52.35% of the city was identified as WTC, which was increased by about 16.37% compared with 2009.
- ✔
- Notable thermal comfort degradation, especially in BU areas, was also associated with arbitrary urban expansion in the western part of Tehran since these regions were also classified as WTC even in earlier years when no BU existed.
- ✔
- The preliminary results of comparing SUHI intensities and AP (i.e., NO2, O3, PM2.5, and PM10) concentrations indicated positive CC values between these two environmental phenomena in Tehran, which could be considered to adopt two-way mitigation strategies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviations | Definitions | Abbreviations | Definitions |
---|---|---|---|
ANN | Artificial Neural Networks | NC | Normal Condition |
ASTER | Thermal Emission and Reflection Radiometer | NDVI | Normalized Difference Vegetation Index |
BC | Bad Condition | OLI | Operational Land Imager |
BL | Bare Land | PM | Particulate Matter |
BU | Built-Up | RBF | Radial Basis Function |
CA-M | Cellular Automata-Markov | SD | Standard Deviation |
CC | Correlation Coefficient | SUHI | Surface Urban Heat Island |
CF Mask | C Function of Mask | SVM | Support Vector Machine |
EC | Excellent Condition | TIR | Thermal Infrared |
GC | Good Condition | TIRS | Thermal Infrared Sensor |
GEE | Google Earth Engine | TM | Thematic Mapper |
GS | Green Space | UHI | Urban Heat Island |
GSM | Gaussian Surface Model | USGS | United States Geological Survey |
LaSRC | Land Surface Reflectance Code | UTFVI | Urban Thermal Field Variance Index |
LEDAPS | Landsat Ecosystem Distribution Adaptive Processing System | WB | Water Body |
LST | Land Surface Temperature | WC | Worse Condition |
LULC | Land Use/Land Cover | WTC | Worst Condition |
NASA | National Aeronautics and Space Administration |
Result | Satellite | Bands | Spatial Resolution (m) | Number of Images | Dates |
---|---|---|---|---|---|
LULC | Landsat-5 | 1, 2, 3, 4, 5, and 7 | 30 | 18 | 10/06/1989, 13/06/1990, 16/06/1991, 18/06/1992, 25/09/1993, 12/09/1994, 11/06/1995, 17/09/1996, 13/04/1997, 05/07/1998, 24/07/1999, 12/09/2000, 29/07/2001, 30/06/2002, 30/06/2008, 13/03/2009, 04/06/2010, 09/07/2011 |
Landsat-8 | 2, 3, 4, 5, 6, and 7 | 30 | 7 | 16/09/2013, 18/08/2014, 05/08/2015, 07/08/2016, 25/07/2017, 26/06/2018, 31/07/2019 | |
UHI, UTFVI, and NDVI | Landsat-5 | 6 | 30/120 m | 32 | 01/01/1989, 06/03/1989, 25/05/1989, 10/06/1989, 26/06/1989, 29/08/1989, 14/09/1989, 30/09/1989, 16/10/1989, 13/01/1999, 18/03/1999, 19/04/1999, 05/05/1999, 21/05/1999, 06/06/1999, 08/07/1999, 24/07/1999, 09/08/1999, 10/09/1999, 12/10/1999, 13/11/1999, 13/03/2009, 01/06/2009, 17/06/2009, 03/07/2009, 19/07/2009, 04/08/2009, 05/09/2009, 21/09/2009, 07/10/2009, 08/11/2009, 24/11/2009 |
Landsat-8 | 10 | 30/100 m | 15 | 04/01/2019, 05/02/2019, 21/02/2019, 10/04/2019, 12/05/2019, 28/05/2019, 13/06/2019, 29/06/2019, 15/07/2019, 31/07/2019, 16/08/2019, 01/09/2019, 17/09/2019, 03/10/2019, 19/10/2019 |
|
|
ID | Class | 1989 | 1999 | 2009 | 2019 | ||||
---|---|---|---|---|---|---|---|---|---|
Polygons | Area (ha) | Polygons | Area (ha) | Polygons | Area (ha) | Polygons | Area (ha) | ||
1 | Built-Up | 64 | 84.01 | 67 | 90.66 | 71 | 94.38 | 77 | 105.62 |
2 | Bare Land | 83 | 199.85 | 84 | 208.19 | 81 | 193.78 | 80 | 189.38 |
3 | Green Space | 78 | 169.59 | 83 | 193.09 | 82 | 180.30 | 76 | 163.77 |
4 | Water Body | 14 | 7.38 | 14 | 7.38 | 14 | 7.38 | 25 | 15.89 |
Total | 239 | 460.83 | 248 | 499.33 | 247 | 475.84 | 258 | 474.66 |
References
- Ye, C.; Wang, M.; Li, J. Derivation of the characteristics of the Surface Urban Heat Island in the Greater Toronto area using thermal infrared remote sensing. Remote Sens. Lett. 2017, 8, 637–646. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Spatial patterns and driving factors of surface urban heat island intensity: A comparative study for two agriculture-dominated regions in China and the USA. Sustain. Cities Soc. 2019, 48, 101518. [Google Scholar] [CrossRef]
- Gaur, A.; Eichenbaum, M.K.; Simonovic, S.P. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. J. Environ. Manag. 2018, 206, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P., II. Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environ. Res. Lett. 2016, 11, 54023. [Google Scholar] [CrossRef]
- Krause, C.W.; Lockard, B.; Newcomb, T.J.; Kibler, D.; Lohani, V.; Orth, D.J. Predicting influences of urban development on thermal habitat in a warm water stream. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1645–1658. [Google Scholar] [CrossRef]
- Gu, Y.; Li, D. A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Clim. 2018, 24, 982–993. [Google Scholar] [CrossRef]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Jacobs, S.J.; Gallant, A.J.E.; Tapper, N.J.; Li, D. Use of cool roofs and vegetation to mitigate urban heat and improve human thermal stress in Melbourne, Australia. J. Appl. Meteorol. Climatol. 2018, 57, 1747–1764. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Swamy, G.; Nagendra, S.M.S.; Schlink, U. Urban heat island (UHI) influence on secondary pollutant formation in a tropical humid environment. J. Air Waste Manag. Assoc. 2017, 67, 1080–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarif, M.; Rimal, B.; Stork, N.E. Assessment of Changes in Land Use/Land Cover and Land Surface Temperatures and Their Impact on Surface Urban Heat Island Phenomena in the Kathmandu Valley (1988–2018). ISPRS Int. J. Geo Inf. 2020, 9, 726. [Google Scholar] [CrossRef]
- 2018 Revision of World Urbanization Prospects; UN DESA: New York, NY, USA, 2018.
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Gui, X.; Wang, L.; Yao, R.; Yu, D.; Li, C.A. Investigating the urbanization process and its impact on vegetation change and urban heat island in Wuhan, China. Environ. Sci. Pollut. Res. 2019, 26, 30808–30825. [Google Scholar] [CrossRef]
- Harmay, N.S.M.; Kim, D.; Choi, M. Urban Heat Island associated with Land Use/Land Cover and climate variations in Melbourne, Australia. Sustain. Cities Soc. 2021, 69, 102861. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Han, J.; Liu, J.; Liu, L.; Ye, Y. Spatiotemporal Changes in the Urban Heat Island Intensity of Distinct Local Climate Zones: Case Study of Zhongshan District, Dalian, China. Complexity 2020, 2020, 8820338. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K.; Lakes, T.; Qureshi, S. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecol. Indic. 2018, 91, 155–170. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. GIScience Remote Sens. 2019, 56, 576–604. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to investigate surface urban heat islands in Texas. GIScience Remote Sens. 2020, 57, 1083–1101. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef]
- Alfraihat, R.; Mulugeta, G.; Gala, T. Ecological evaluation of urban heat island in Chicago City, USA. J. Atmos. Pollut. 2016, 4, 23–29. [Google Scholar]
- Kafy, A.-A.; Rahman, M.S.; Islam, M.; Al Rakib, A.; Islam, M.A.; Khan, M.H.H.; Sikdar, M.S.; Sarker, M.H.S.; Mawa, J.; Sattar, G.S.; et al. Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustain. Cities Soc. 2021, 64, 102542. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, Y.; Yue, W.; Li, X.; Liu, Y.; Lu, D. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean. Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A.N.V. Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustain. Cities Soc. 2020, 52, 101846. [Google Scholar] [CrossRef]
- Shirani-Bidabadi, N.; Nasrabadi, T.; Faryadi, S.; Larijani, A.; Roodposhti, M.S. Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustain. Cities Soc. 2019, 45, 686–692. [Google Scholar] [CrossRef]
- De Faria Peres, L.; de Lucena, A.J.; Rotunno Filho, O.C.; de Almeida França, J.R. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Nadizadeh Shorabeh, S.; Hamzeh, S.; Zanganeh Shahraki, S.; Firozjaei, M.K.; Jokar Arsanjani, J. Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. Int. J. Remote Sens. 2020, 41, 7400–7426. [Google Scholar] [CrossRef]
- Sharifi, A.; Hosseingholizadeh, M. The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. J. Indian Soc. Remote Sens. 2019, 47, 1063–1071. [Google Scholar] [CrossRef]
- Farhadi, H.; Faizi, M.; Sanaieian, H. Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustain. Cities Soc. 2019, 46, 101448. [Google Scholar] [CrossRef]
- Jahangir, M.S.; Moghim, S. Assessment of the urban heat island in the city of Tehran using reliability methods. Atmos. Res. 2019, 225, 144–156. [Google Scholar] [CrossRef]
- Bokaie, M.; Shamsipour, A.; Khatibi, P.; Hosseini, A. Seasonal monitoring of urban heat island using multi-temporal Landsat and MODIS images in Tehran. Int. J. Urban Sci. 2019, 23, 269–285. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Sadeghinia, A.; Alijani, B.; Zeaieanfirouzabadi, P. Analysis of Spatial-Temporal Structure of the Urban Heat Island in Tehran through Remote Sensing and Geographical Information System. J. Geogr. Environ. Hazards 2013, 1, 1–17. [Google Scholar]
- Hashemi Darebadami, S.; Darvishi Boloorani, A.; AlaviPanah, S.K.; Bayat, R. Investigation of changes in surface urban heat-island (SUHI) in day and night using multi-temporal MODIS sensor data products (Case Study: Tehran metropolitan). J. Appl. Res. Geogr. Sci. 2019, 19, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Moghbel, M.; Shamsipour, A.A. Spatiotemporal characteristics of urban land surface temperature and UHI formation: A case study of Tehran, Iran. Theor. Appl. Climatol. 2019, 137, 2463–2476. [Google Scholar] [CrossRef]
- Shi, H.; Xian, G.; Auch, R.; Gallo, K.; Zhou, Q. Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land 2021, 10, 867. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Khoshsima, M.; Pierleoni, A. Aerosol climatology and determination of different types over the semi-arid urban area of Tehran, Iran: Application of multi-platform remote sensing satellite data. Atmos. Pollut. Res. 2020, 11, 1625–1636. [Google Scholar] [CrossRef]
- Zhong, C.; Chen, C.; Liu, Y.; Gao, P.; Li, H. A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed In Situ Data and Satellite Images. Sustainability 2019, 11, 7075. [Google Scholar] [CrossRef] [Green Version]
- Henao, J.J.; Rendón, A.M.; Salazar, J.F. Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Clim. 2020, 31, 100542. [Google Scholar] [CrossRef]
- Lai, L.-W.; Cheng, W.-L. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 2009, 407, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Ngarambe, J.; Joen, S.J.; Han, C.-H.; Yun, G.Y. Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea. J. Hazard. Mater. 2021, 403, 123615. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H.; Weng, Q.; Liu, H.; Valavi, R. Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: A case study of Tehran, Iran. GIScience Remote Sens. 2020, 57, 483–496. [Google Scholar] [CrossRef]
- Torbatian, S.; Hoshyaripour, A.; Shahbazi, H.; Hosseini, V. Air pollution trends in Tehran and their anthropogenic drivers. Atmos. Pollut. Res. 2020, 11, 429–442. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Abdullah, N.; Tahir, M.M.; Maulud, K.N.A.; Mohd-Nor, M.F.I. The link between urbanization and climatic factors: A concept on formation of urban heat island. WSEAS Trans. Environ. Dev. 2010, 6, 754–768. [Google Scholar]
- Tayyebi, A.; Shafizadeh-Moghadam, H.; Tayyebi, A.H. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy 2018, 71, 459–469. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- De Griend, A.A.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 17. [Google Scholar]
- Boone, R.B.; Galvin, K.A.; Smith, N.M.; Lynn, S.J. Generalizing El Nino effects upon Maasai livestock using hierarchical clusters of vegetation patterns. Photogramm. Eng. Remote Sens. 2000, 66, 737–744. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Xu, Y.; Zhang, S.; Luan, Q. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2018, 133, 473–488. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Anniballe, R.; Bonafoni, S.; Pichierri, M. Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sens. Environ. 2014, 150, 163–171. [Google Scholar] [CrossRef]
- Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 2002, 23, 2595–2608. [Google Scholar] [CrossRef]
- Anniballe, R.; Bonafoni, S. A stable Gaussian fitting procedure for the parameterization of remote sensed thermal images. Algorithms 2015, 8, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, T.; Gu, X.; Zhang, Y.; Chen, L. Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. J. Remote Sens. 2006, 10, 789. [Google Scholar]
- Du, H.; Yang, C. Re-visitation of the thermal environment evaluation index standard effective temperature (SET*) based on the two-node model. Sustain. Cities Soc. 2020, 53, 101899. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Amelung, B. Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal Forecasts, Climatic Change and Human Health; Springer: Berlin/Heidelberg, Germany, 2008; pp. 161–172. [Google Scholar]
- Sejati, A.W.; Buchori, I.; Rudiarto, I. The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain. Cities Soc. 2019, 46, 101432. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–334. [Google Scholar]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Yousefian, F.; Faridi, S.; Azimi, F.; Aghaei, M.; Shamsipour, M.; Yaghmaeian, K.; Hassanvand, M.S. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci. Rep. 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Heaviside, C.; Vardoulakis, S.; Cai, X.-M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Žuvela-Aloise, M.; Koch, R.; Buchholz, S.; Früh, B. Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim. Chang. 2016, 135, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Conry, P.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Chen, F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 64004. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Aslam, M.Y.; Krishna, K.R.; Beig, G.; Tinmaker, M.I.R.; Chate, D.M. Seasonal variation of urban heat island and its impact on air-quality using SAFAR observations at Delhi, India. Am. J. Clim. Chang. 2017, 6, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631, 921–933. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef] [PubMed]
- Menon, J.S.; Sharma, R. Nature-based solutions for co-mitigation of air pollution and urban heat in Indian cities. Front. Sustain. Cities 2021, 3, 93. [Google Scholar] [CrossRef]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Fallmann, J.; Forkel, R.; Emeis, S. Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ. 2016, 125, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.A.; Lee, S.-M.; Katzenstein, A.S.; Carreras-Sospedra, M.; Zhang, X.; Farina, S.C.; Vahmani, P.; Fine, P.M.; Ban-Weiss, G. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California. Proc. Natl. Acad. Sci. USA 2017, 114, 8991–8996. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, N.Y.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
Air Pollutant | Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Annual | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
NO2 | 64 | 8.26 | 78.07 | 15.8 | 63.12 | 19.73 | 65.64 | 16.41 | 69.79 | 14.68 |
O3 | 49.22 | 14.57 | 76.68 | 33.7 | 36.81 | 6.83 | 22.44 | 13.46 | 52.97 | 31.95 |
PM2.5 | 49.25 | 13.12 | 59.18 | 10.64 | 66.27 | 12.76 | 44.98 | 13.56 | 54.2 | 14.01 |
PM10 | 61.43 | 20.22 | 70.18 | 20.11 | 73.17 | 22.54 | 64.25 | 21.89 | 66.52 | 20.61 |
UTFVI Value Range | Environmental Condition Category | |
---|---|---|
1 | <0.000 | Excellent Condition (EC) |
2 | 0.000–0.005 | Good Condition (GC) |
3 | 0.0005–0.010 | Normal Condition (NC) |
4 | 0.010–0.015 | Bad Condition (BC) |
5 | 0.015–0.020 | Worse Condition (WC) |
6 | >0.020 | Worst Condition (WTC) |
SUHI Intensity Ranges | SUHI Category | |
---|---|---|
1 | Very Low | |
2 | Low | |
3 | Moderate | |
4 | High | |
5 | Very High |
Year from | Mean SUHI (°C) | Year to | Numb. of Pixels | Area (km2) | % of GS | Mean SUHI (°C) |
---|---|---|---|---|---|---|
1989 | 1999 | |||||
Green Space | 1.286 | Built-Up | 19,502 | 20.67 | 15.5 | 1.442 |
Bare Land | 18,110 | 19.2 | 14.4 | 3.267 | ||
Water Body | 154 | 0.16 | 0.1 | −1.174 | ||
1999 | 2009 | |||||
Green Space | 0.963 | Built-Up | 22,975 | 24.35 | 18.6 | 2.206 |
Bare Land | 25,438 | 26.96 | 20.6 | 3.127 | ||
Water Body | 0 | 0 | 0 | - | ||
2009 | 2019 | |||||
Green Space | 1.469 | Built-Up | 17,278 | 18.31 | 18.2 | 2.864 |
Bare Land | 19,121 | 20.27 | 20.2 | 4.878 | ||
Water Body | 80 | 0.08 | 0.1 | −3.07 |
1989 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
LULC Classes | Coverage (%) | Mean SUHI (°C) | Coverage (%) | Mean SUHI (°C) | ||||||
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |||
BU | 45.17 | 2.864 | 2.888 | 1.512 | −0.561 | 69.26 | 4.44 | 4.298 | 3.137 | 1.706 |
GS | 18.23 | 1.535 | 0.833 | 0.978 | −0.6 | 11.9 | 3.359 | 3.24 | 2.773 | 2.122 |
WB | 0.03 | −0.897 | −2.592 | −1.449 | −1.682 | 0.25 | −2.783 | −1.623 | −0.145 | 1.595 |
BL | 36.57 | 3.971 | 5.045 | 4.463 | −0.66 | 18.6 | 6.816 | 7.392 | 6.619 | 3.286 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najafzadeh, F.; Mohammadzadeh, A.; Ghorbanian, A.; Jamali, S. Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran. Remote Sens. 2021, 13, 4469. https://doi.org/10.3390/rs13214469
Najafzadeh F, Mohammadzadeh A, Ghorbanian A, Jamali S. Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran. Remote Sensing. 2021; 13(21):4469. https://doi.org/10.3390/rs13214469
Chicago/Turabian StyleNajafzadeh, Faezeh, Ali Mohammadzadeh, Arsalan Ghorbanian, and Sadegh Jamali. 2021. "Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran" Remote Sensing 13, no. 21: 4469. https://doi.org/10.3390/rs13214469
APA StyleNajafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran. Remote Sensing, 13(21), 4469. https://doi.org/10.3390/rs13214469