Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance
Abstract
:1. Introduction
2. Methods
2.1. The Network Structure
2.2. Feature Enhanced Module
3. Dataset and Experiments Settings
3.1. Dataset
3.2. Experimental Settings
3.3. Evaluation Metrics
4. Results and Analysis
4.1. Ablation I Experiments
4.2. Ablation II Experiments
4.3. Comparison Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Li, Q.; Wang, W.; Wang, J.; Zhang, J.; Geng, D. Exploring the relationship between InSAR coseismic deformation and earthquake-damaged buildings. Remote Sens. Environ. 2021, 262, 112508. [Google Scholar] [CrossRef]
- De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Hou, J.; Yang, M.; Deng, M. Improving Building Change Detection in VHR Remote Sensing Imagery by Combining Coarse Location and Co-Segmentation. ISPRS Int. J. Geo-Inf. 2018, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, Z.; Tian, X. Vegetation change detection research of Dunhuang city based on GF-1 data. Int. J. Coal Sci. Technol. 2018, 5, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, V.; Dobigeon, N.; Wei, Q.; Chabert, M. Detecting Changes Between Optical Images of Different Spatial and Spectral Resolutions: A Fusion-Based Approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1566–1578. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [Google Scholar] [CrossRef]
- Eid, A.N.M.; Olatubara, C.O.; Ewemoje, T.A.; El-Hennawy, M.T.; Farouk, H. Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sens. Appl. Soc. Environ. 2020, 19, 100347. [Google Scholar] [CrossRef]
- Niemeyer, I.; Marpu, P.R.; Nussbaum, S. Change detection using object features. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 154–196. [Google Scholar]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Wang, B.; Choi, J.; Choi, S.; Lee, S.; Wu, P.; Gao, Y. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images. Remote Sens. 2017, 9, 804. [Google Scholar] [CrossRef] [Green Version]
- Haiquan, F.; Yunzhong, J.; Yuntao, Y.; Yin, C. River Extraction from High-Resolution Satellite Images Combining Deep Learning and Multiple Chessboard Segmentation. Acta Sci. Nat. Univ. Pekin. 2019, 55, 692–698. [Google Scholar]
- Gong, M.; Yang, Y.-H. Quadtree-based genetic algorithm and its applications to compzter vision. Pattern Recognit. 2004, 37, 1723–1733. [Google Scholar] [CrossRef]
- Baraldi, A.; Boschetti, L. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction. Remote Sens. 2012, 4, 2694–2735. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Bai, Y.; Li, Y.; Shang, C.; Shen, Q. High-resolution triplet network with dynamic multiscale feature for change detection on satellite images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 103–115. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.D.; Chen, G.Z.; Dai, F.; Gong, Y.F.; Zhu, K. Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sens Lett 2018, 9, 923–932. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, X.; Li, D.Y.; Zhang, H.L.; Yang, Y.; Pan, H.G. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions. Comput Ind 2021, 132, 103506. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Pan, D.F. Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering. IEEE Access 2019, 7, 174495–174506. [Google Scholar] [CrossRef]
- Afify, H.M.; Mohammed, K.K.; Hassanien, A.E. An improved framework for polyp image segmentation based on SegNet architecture. Int. J. Imag. Syst Technol. 2021, 31, 1741–1751. [Google Scholar] [CrossRef]
- Moustafa, M.S.; Mohamed, S.A.; Ahmed, S.; Nasr, A.H. Hyperspectral change detection based on modification of UNet neural networks. J. Appl. Remote Sens 2021, 15, 028505. [Google Scholar] [CrossRef]
- Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A Deep Multitask Learning Framework Coupling Semantic Segmentation and Fully Convolutional LSTM Networks for Urban Change Detection. IEEE T Geosci Remote. 2021, 99, 1–18. [Google Scholar]
- Gong, M.; Yang, H.; Zhang, P. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 212–225. [Google Scholar] [CrossRef]
- Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens. 2020, 12, 2669. [Google Scholar] [CrossRef]
- Samadi, F.; Akbarizadeh, G.; Kaabi, H. Change detection in SAR images using deep belief network: A new training approach based on morphological images. Iet. Image Process 2019, 13, 2255–2264. [Google Scholar] [CrossRef]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1792–1796. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1194–1206. [Google Scholar] [CrossRef]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2848–2864. [Google Scholar] [CrossRef]
- Huang, L.; An, R.; Zhao, S.; Jiang, T.; Hu, H. A Deep Learning-Based Robust Change Detection Approach for Very High Resolution Remotely Sensed Images with Multiple Features. Remote Sens. 2020, 12, 1441. [Google Scholar] [CrossRef]
- Fang, B.; Pan, L.; Kou, R. Dual Learning-Based Siamese Framework for Change Detection Using BiTemporal VHR Optical Remote Sensing Images. Remote Sens. 2019, 11, 1292. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multi-Source Building Extraction from An Open Aerial and Satellite Imagery Data Set. Ieee T. Geosci. Remote 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
Experimental Settings | Value |
---|---|
Framework | TensorFlow |
Language | Python |
Central Processing Unit | Intel Core i9 processor [email protected] GHz |
Graphics Processing Unit | NVIDIA GEFORCE GTX 1080 Ti (11 GB) |
Optimization Algorithm | Adam |
Batch Size | 12 |
Base Learning rate | 0.001 |
Train crop size | 256 × 256 |
IoU | Recall | F1 Score | |
---|---|---|---|
EF-Dens | 0.7423 | 0.7870 | 0.8521 |
MDNet | 0.4572 | 0.9337 | 0.6275 |
Ours | 0.8526 | 0.9418 | 0.9204 |
IoU | Recall | F1 Score | |
---|---|---|---|
MDEFNET-LL | 0.7182 | 0.7976 | 0.8360 |
MDEFNET-HL | 0.7344 | 0.7786 | 0.8469 |
Ours | 0.8526 | 0.9418 | 0.9204 |
IoU | Recall | F1 Score | MP | |
---|---|---|---|---|
FC-EF | 0.7954 | 0.8696 | 0.8861 | 16 |
FC-Siam-conc | 0.8163 | 0.8651 | 0.8988 | 8 |
FC-Siam-diff | 0.7955 | 0.8689 | 0.8861 | 12 |
SegNet | 0.7263 | 0.8415 | 0.8414 | 11 |
DASNet | 0.7941 | 0.8582 | 0.8843 | 9 |
STANet | 0.7056 | 0.7333 | 0.8274 | 18 |
Ours | 0.8526 | 0.9418 | 0.9204 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Xu, H.; Yang, H.; Wang, B.; Wu, P.; Choi, J.; Cai, L.; Wu, Y. Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance. Remote Sens. 2021, 13, 4171. https://doi.org/10.3390/rs13204171
Xue J, Xu H, Yang H, Wang B, Wu P, Choi J, Cai L, Wu Y. Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance. Remote Sensing. 2021; 13(20):4171. https://doi.org/10.3390/rs13204171
Chicago/Turabian StyleXue, Junkang, Hao Xu, Hui Yang, Biao Wang, Penghai Wu, Jaewan Choi, Lixiao Cai, and Yanlan Wu. 2021. "Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance" Remote Sensing 13, no. 20: 4171. https://doi.org/10.3390/rs13204171
APA StyleXue, J., Xu, H., Yang, H., Wang, B., Wu, P., Choi, J., Cai, L., & Wu, Y. (2021). Multi-Feature Enhanced Building Change Detection Based on Semantic Information Guidance. Remote Sensing, 13(20), 4171. https://doi.org/10.3390/rs13204171