Figure 1.
Flowchart of the study.
Figure 1.
Flowchart of the study.
Figure 2.
Spatial pattern of (a) elevation and (b) annual mean precipitation and division of 9 agricultural regions across mainland China. NEC: Northeast China Plain; NAS: northern arid and semiarid region; 3HP: Huang-Huai-Hai Plain; LP: Loess Plateau; TP: Tibetan Plateau; MLY: middle-lower Yangtze Plateau; SBS: Sichuan Basin and surrounding regions; SC: South China; YGP: Yunnan–Guizhou Plateau.
Figure 2.
Spatial pattern of (a) elevation and (b) annual mean precipitation and division of 9 agricultural regions across mainland China. NEC: Northeast China Plain; NAS: northern arid and semiarid region; 3HP: Huang-Huai-Hai Plain; LP: Loess Plateau; TP: Tibetan Plateau; MLY: middle-lower Yangtze Plateau; SBS: Sichuan Basin and surrounding regions; SC: South China; YGP: Yunnan–Guizhou Plateau.
Figure 3.
(a–d) CC, (e–h) BIAS, (i–l) RMSE and (m–p) ME of the four SREs w.r.t in situ observations in June 2000–May 2019.
Figure 3.
(a–d) CC, (e–h) BIAS, (i–l) RMSE and (m–p) ME of the four SREs w.r.t in situ observations in June 2000–May 2019.
Figure 4.
CC of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observations in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 4.
CC of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observations in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 5.
RMSE of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 5.
RMSE of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 6.
POD of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 6.
POD of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 7.
FAR of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 7.
FAR of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 8.
MISS of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 8.
MISS of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
Figure 9.
Time series of regional-averaged SPEI3 of the four typical drought-affected areas((a) NEC, (b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical drought events.
Figure 9.
Time series of regional-averaged SPEI3 of the four typical drought-affected areas((a) NEC, (b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical drought events.
Figure 10.
Time series of ratio of drought area of the four typical drought-affected areas ((a) NEC, (b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical drought events.
Figure 10.
Time series of ratio of drought area of the four typical drought-affected areas ((a) NEC, (b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical drought events.
Figure 11.
Temporal (a) CC, (b) RMSE, (c) POD, (d) FAR and (e) MISS of the regional averaged drought indices for the four drought-affected regions.
Figure 11.
Temporal (a) CC, (b) RMSE, (c) POD, (d) FAR and (e) MISS of the regional averaged drought indices for the four drought-affected regions.
Figure 12.
Spatial pattern of the typical drought events for the four typical drought-affected agricultural regions based on in situ observations (a,f,k,p), GNRT6 (b,g,l,q), GGA6 (c,h,m,r), IMF6(d,i,n,s) and 3B42V7 (e,j,o,t).
Figure 12.
Spatial pattern of the typical drought events for the four typical drought-affected agricultural regions based on in situ observations (a,f,k,p), GNRT6 (b,g,l,q), GGA6 (c,h,m,r), IMF6(d,i,n,s) and 3B42V7 (e,j,o,t).
Figure 13.
(e,f) Temporal and (a–d) spatial comparison of the SPEI3 based on the long-term (1981–2019, 38 a) and short-term (2000–2019, 19 a) in situ observations.
Figure 13.
(e,f) Temporal and (a–d) spatial comparison of the SPEI3 based on the long-term (1981–2019, 38 a) and short-term (2000–2019, 19 a) in situ observations.
Table 1.
Classification used for Standardized Precipitation Evapotranspiration Index (SPEI).
Table 1.
Classification used for Standardized Precipitation Evapotranspiration Index (SPEI).
Drought Class | SPEI Values |
---|
Extreme wet | SPEI ≥ 2.0 |
Very wet | 1.5 < SPEI < 2.0 |
Moderate wet | 1 < SPEI <1.5 |
Mild wet | 0.5 < SPEI < 1.0 |
Normal | −0.5 ≤ SPEI ≤ 0.5 |
Mild drought | −1 < SPEI < −0.5 |
Moderate drought | −1.5 < SPEI < −1.0 |
Severe drought | −2 < SPEI < −1.5 |
Extreme drought | SPEI ≤ −2.0 |
Table 2.
Statistical metrics for evaluation used in this study a.
Table 2.
Statistical metrics for evaluation used in this study a.
Statistic Metrics | Equation | Perfect Value |
---|
Probability of Detection (POD) | | 1 |
False Alarm Ratio (FAR) | | 0 |
MISS | | 0 |
Correlation Coefficient (CC) | | 1 |
Relative Bias (BIAS) | | 0 |
Root Mean Squared Error (RMSE) | | 0 |
Mean Error | | 0 |
Table 3.
50% and 95% quantiles of monthly CC and BIAS of the four SREs w.r.t. in situ observations for the nine agricultural regions for 2000–2019.
Table 3.
50% and 95% quantiles of monthly CC and BIAS of the four SREs w.r.t. in situ observations for the nine agricultural regions for 2000–2019.
Agricultural Region | Quantile/Mean Value(MV) | GNRT6 | GGA6 | IMF6 | 3B42V7 |
---|
| | CC | BIAS (%) | CC | BIAS (%) | CC | BIAS (%) | CC | BIAS (%) |
---|
NEC | 5% | 0.797 | −24 | 0.918 | −15 | 0.933 | −2 | 0.920 | 2 |
50% | 0.872 | −1 | 0.967 | −4 | 0.973 | 11 | 0.956 | 12 |
95% | 0.907 | 14 | 0.985 | 5 | 0.984 | 30 | 0.974 | 27 |
MV | 0.863 | −1 | 0.960 | −4 | 0.968 | 12 | 0.952 | 13 |
NAS | 5% | 0.115 | −41 | 0.347 | −66 | 0.552 | −58 | 0.399 | −47 |
50% | 0.672 | 8 | 0.904 | −5 | 0.882 | 1 | 0.851 | 3 |
95% | 0.888 | 283 | 0.978 | 44 | 0.976 | 82 | 0.963 | 66 |
MV | 0.603 | 53 | 0.825 | −8 | 0.841 | 4 | 0.792 | 6 |
3HP | 5% | 0.806 | −14 | 0.942 | −9 | 0.954 | −6 | 0.937 | −4 |
50% | 0.870 | 0 | 0.968 | 0 | 0.973 | 7 | 0.964 | 8 |
95% | 0.908 | 16 | 0.981 | 9 | 0.983 | 18 | 0.977 | 19 |
MV | 0.865 | 0 | 0.964 | 0 | 0.970 | 7 | 0.959 | 8 |
LP | 5% | 0.776 | −12 | 0.922 | −14 | 0.949 | −14 | 0.929 | −13 |
50% | 0.857 | 3 | 0.962 | −2 | 0.975 | 0 | 0.957 | 3 |
95% | 0.896 | 20 | 0.980 | 15 | 0.983 | 17 | 0.974 | 18 |
MV | 0.850 | 3 | 0.957 | −1 | 0.972 | 0 | 0.955 | 3 |
TP | 5% | 0.142 | −73 | 0.586 | −54 | 0.643 | −55 | 0.523 | −37 |
50% | 0.640 | −11 | 0.933 | −3 | 0.899 | −6 | 0.850 | 3 |
95% | 0.903 | 147 | 0.988 | 80 | 0.973 | 130 | 0.961 | 187 |
MV | 0.601 | 3 | 0.884 | 1 | 0.868 | 13 | 0.810 | 36 |
MLY | 5% | 0.776 | −22 | 0.902 | −12 | 0.930 | −11 | 0.912 | −7 |
50% | 0.849 | −7 | 0.953 | −1 | 0.966 | 7 | 0.949 | 5 |
95% | 0.891 | 10 | 0.973 | 12 | 0.979 | 16 | 0.967 | 16 |
MV | 0.842 | −6 | 0.948 | −1 | 0.961 | 5 | 0.944 | 5 |
SBS | 5% | 0.784 | −16 | 0.898 | −29 | 0.898 | −28 | 0.878 | −24 |
50% | 0.878 | 2 | 0.952 | −2 | 0.964 | −2 | 0.952 | 2 |
95% | 0.940 | 36 | 0.985 | 19 | 0.981 | 19 | 0.978 | 19 |
MV | 0.874 | 5 | 0.948 | −3 | 0.954 | −4 | 0.943 | 0 |
SC | 5% | 0.810 | −49 | 0.910 | −25 | 0.934 | −13 | 0.917 | −14 |
50% | 0.865 | −19 | 0.963 | −4 | 0.969 | 0 | 0.962 | 2 |
95% | 0.903 | 7 | 0.982 | 8 | 0.982 | 18 | 0.980 | 20 |
MV | 0.862 | −19 | 0.957 | −5 | 0.965 | 1 | 0.956 | 3 |
YGP | 5% | 0.744 | −25 | 0.862 | −20 | 0.872 | −11 | 0.863 | −15 |
50% | 0.883 | −12 | 0.960 | −5 | 0.969 | 0 | 0.960 | 1 |
95% | 0.928 | 5 | 0.984 | 6 | 0.986 | 11 | 0.982 | 11 |
MV | 0.865 | −11 | 0.951 | −5 | 0.956 | 0 | 0.951 | 0 |
Table 4.
Seasonal statistics of the four SREs w.r.t in situ observations over Mainland China.
Table 4.
Seasonal statistics of the four SREs w.r.t in situ observations over Mainland China.
Season | Product | CC | ME (mm) | BIAS (%) | RMSE (mm) |
---|
Spring | GNRT6 | 0.857 | −3.22 | −2.62 | 3.88 |
GGA6 | 0.916 | 1.28 | 3.28 | 3.46 |
IMF6 | 0.922 | 0.57 | 6.45 | 3.15 |
3B42V7 | 0.906 | −2.79 | −6.55 | 3.66 |
Summer | GNRT6 | 0.862 | 2.95 | 1.23 | 8.52 |
GGA6 | 0.913 | −6.59 | −1.66 | 6.98 |
IMF6 | 0.922 | −3.22 | −5.28 | 6.82 |
3B42V7 | 0.905 | −2.56 | −3.89 | 8.22 |
Autumn | GNRT6 | 0.839 | −5.22 | −9.55 | 3.25 |
GGA6 | 0.925 | −2.88 | −5.56 | 3.01 |
IMF6 | 0.930 | −1.59 | −1.47 | 2.89 |
3B42V7 | 0.902 | −3.13 | −1.59 | 3.12 |
Winter | GNRT6 | 0.735 | −5.75 | −8.38 | 4.05 |
GGA6 | 0.919 | −1.65 | −1.95 | 1.75 |
IMF6 | 0.932 | −0.2 | −0.87 | 1.57 |
3B42V7 | 0.838` | −3.24 | −7.25 | 3.02 |
Table 5.
CC of the 1-, 3-, 6- and 12-month SPEI calculated by GNRT6 and GGA6 for the nine agricultural regions. The gray-filled data represents the maximum average CC of the four SREs in the region and time scale.
Table 5.
CC of the 1-, 3-, 6- and 12-month SPEI calculated by GNRT6 and GGA6 for the nine agricultural regions. The gray-filled data represents the maximum average CC of the four SREs in the region and time scale.
Agricultural Region | Quantile/Mean Value(MV) | GNRT6 | GGA6 |
---|
| | SPEI1 | SPEI3 | SPEI6 | SPEI12 | SPEI1 | SPEI3 | SPEI6 | SPEI12 |
---|
NEC | 5% | 0.604 | 0.774 | 0.626 | 0.556 | 0.644 | 0.865 | 0.787 | 0.865 |
50% | 0.810 | 0.925 | 0.950 | 0.900 | 0.758 | 0.942 | 0.923 | 0.929 |
95% | 0.901 | 0.971 | 0.978 | 0.953 | 0.832 | 0.970 | 0.964 | 0.957 |
MV | 0.782 | 0.751 | 0.761 | 0.776 | 0.900 | 0.934 | 0.929 | 0.917 |
NAS | 5% | 0.206 | 0.449 | 0.361 | 0.131 | 0.490 | 0.690 | 0.732 | 0.641 |
50% | 0.681 | 0.865 | 0.865 | 0.681 | 0.814 | 0.952 | 0.948 | 0.913 |
95% | 0.901 | 0.976 | 0.972 | 0.959 | 0.939 | 0.990 | 0.983 | 0.972 |
MV | 0.630 | 0.782 | 0.737 | 0.711 | 0.807 | 0.917 | 0.895 | 0.871 |
3HP | 5% | 0.636 | 0.827 | 0.841 | 0.447 | 0.731 | 0.924 | 0.933 | 0.851 |
50% | 0.797 | 0.935 | 0.945 | 0.849 | 0.800 | 0.961 | 0.961 | 0.938 |
95% | 0.895 | 0.976 | 0.980 | 0.962 | 0.843 | 0.975 | 0.976 | 0.965 |
MV | 0.784 | 0.794 | 0.781 | 0.769 | 0.919 | 0.956 | 0.949 | 0.933 |
LP | 5% | 0.601 | 0.756 | 0.813 | 0.396 | 0.687 | 0.880 | 0.889 | 0.854 |
50% | 0.788 | 0.911 | 0.937 | 0.787 | 0.816 | 0.950 | 0.959 | 0.928 |
95% | 0.892 | 0.968 | 0.977 | 0.956 | 0.875 | 0.976 | 0.977 | 0.963 |
MV | 0.776 | 0.801 | 0.792 | 0.788 | 0.889 | 0.941 | 0.930 | 0.911 |
TP | 5% | 0.235 | 0.357 | 0.364 | 0.153 | 0.491 | 0.606 | 0.613 | 0.524 |
50% | 0.559 | 0.857 | 0.800 | 0.648 | 0.692 | 0.907 | 0.883 | 0.818 |
95% | 0.790 | 0.974 | 0.950 | 0.926 | 0.838 | 0.980 | 0.962 | 0.940 |
MV | 0.541 | 0.678 | 0.630 | 0.589 | 0.796 | 0.869 | 0.860 | 0.836 |
MLY | 5% | 0.729 | 0.855 | 0.898 | 0.700 | 0.724 | 0.894 | 0.907 | 0.883 |
50% | 0.869 | 0.947 | 0.969 | 0.940 | 0.794 | 0.944 | 0.958 | 0.936 |
95% | 0.939 | 0.980 | 0.987 | 0.977 | 0.850 | 0.967 | 0.972 | 0.958 |
MV | 0.847 | 0.790 | 0.808 | 0.839 | 0.925 | 0.935 | 0.940 | 0.939 |
SBS | 5% | 0.544 | 0.693 | 0.714 | 0.486 | 0.574 | 0.786 | 0.761 | 0.747 |
50% | 0.755 | 0.893 | 0.915 | 0.862 | 0.701 | 0.900 | 0.881 | 0.876 |
95% | 0.857 | 0.967 | 0.966 | 0.945 | 0.859 | 0.967 | 0.948 | 0.942 |
MV | 0.732 | 0.713 | 0.722 | 0.732 | 0.868 | 0.889 | 0.893 | 0.882 |
SC | 5% | 0.516 | 0.768 | 0.837 | 0.585 | 0.708 | 0.846 | 0.853 | 0.829 |
50% | 0.786 | 0.929 | 0.945 | 0.909 | 0.810 | 0.927 | 0.922 | 0.914 |
95% | 0.909 | 0.972 | 0.973 | 0.967 | 0.868 | 0.960 | 0.956 | 0.953 |
MV | 0.759 | 0.800 | 0.774 | 0.775 | 0.910 | 0.919 | 0.911 | 0.908 |
YGP | 5% | 0.292 | 0.793 | 0.868 | 0.631 | 0.720 | 0.840 | 0.826 | 0.846 |
50% | 0.884 | 0.951 | 0.963 | 0.932 | 0.837 | 0.952 | 0.952 | 0.946 |
95% | 0.960 | 0.987 | 0.989 | 0.983 | 0.874 | 0.972 | 0.970 | 0.968 |
MV | 0.840 | 0.809 | 0.813 | 0.828 | 0.909 | 0.914 | 0.915 | 0.901 |
Table 6.
Same as
Table 5 but for IMF6 and 3B42V7.
Table 6.
Same as
Table 5 but for IMF6 and 3B42V7.
Agricultural Region | Quantile/Mean Value(MV) | IMF6 | 3B42V7 |
---|
| | SPEI1 | SPEI3 | SPEI6 | SPEI12 | SPEI1 | SPEI3 | SPEI6 | SPEI12 |
---|
NEC | 5% | 0.644 | 0.850 | 0.788 | 0.813 | 0.653 | 0.822 | 0.716 | 0.716 |
50% | 0.768 | 0.941 | 0.942 | 0.923 | 0.789 | 0.933 | 0.944 | 0.910 |
95% | 0.859 | 0.972 | 0.970 | 0.962 | 0.866 | 0.970 | 0.972 | 0.955 |
MV | 0.907 | 0.907 | 0.921 | 0.914 | 0.854 | 0.923 | 0.910 | 0.884 |
NAS | 5% | 0.407 | 0.655 | 0.677 | 0.498 | 0.375 | 0.619 | 0.596 | 0.326 |
50% | 0.772 | 0.937 | 0.931 | 0.855 | 0.755 | 0.916 | 0.911 | 0.785 |
95% | 0.909 | 0.982 | 0.974 | 0.963 | 0.898 | 0.979 | 0.972 | 0.958 |
MV | 0.789 | 0.915 | 0.891 | 0.861 | 0.632 | 0.874 | 0.811 | 0.739 |
3HP | 5% | 0.707 | 0.911 | 0.919 | 0.733 | 0.674 | 0.876 | 0.895 | 0.614 |
50% | 0.784 | 0.954 | 0.956 | 0.911 | 0.772 | 0.939 | 0.946 | 0.878 |
95% | 0.846 | 0.974 | 0.975 | 0.959 | 0.868 | 0.976 | 0.974 | 0.958 |
MV | 0.925 | 0.956 | 0.952 | 0.939 | 0.779 | 0.926 | 0.881 | 0.834 |
LP | 5% | 0.712 | 0.867 | 0.890 | 0.771 | 0.676 | 0.818 | 0.854 | 0.638 |
50% | 0.789 | 0.937 | 0.949 | 0.893 | 0.793 | 0.921 | 0.947 | 0.857 |
95% | 0.886 | 0.975 | 0.974 | 0.956 | 0.878 | 0.966 | 0.972 | 0.948 |
MV | 0.922 | 0.951 | 0.942 | 0.934 | 0.747 | 0.920 | 0.879 | 0.825 |
TP | 5% | 0.421 | 0.572 | 0.561 | 0.432 | 0.366 | 0.501 | 0.518 | 0.333 |
50% | 0.642 | 0.903 | 0.875 | 0.783 | 0.597 | 0.884 | 0.848 | 0.727 |
95% | 0.799 | 0.977 | 0.956 | 0.933 | 0.786 | 0.974 | 0.948 | 0.925 |
MV | 0.747 | 0.854 | 0.838 | 0.805 | 0.614 | 0.783 | 0.749 | 0.694 |
MLY | 5% | 0.735 | 0.902 | 0.917 | 0.858 | 0.755 | 0.895 | 0.913 | 0.791 |
50% | 0.815 | 0.947 | 0.964 | 0.936 | 0.851 | 0.950 | 0.967 | 0.940 |
95% | 0.868 | 0.972 | 0.978 | 0.962 | 0.913 | 0.976 | 0.983 | 0.972 |
MV | 0.949 | 0.948 | 0.955 | 0.958 | 0.899 | 0.927 | 0.923 | 0.918 |
SBS | 5% | 0.569 | 0.777 | 0.757 | 0.704 | 0.566 | 0.741 | 0.756 | 0.604 |
50% | 0.730 | 0.905 | 0.898 | 0.874 | 0.753 | 0.898 | 0.910 | 0.870 |
95% | 0.842 | 0.969 | 0.948 | 0.935 | 0.838 | 0.968 | 0.951 | 0.939 |
MV | 0.888 | 0.871 | 0.882 | 0.887 | 0.805 | 0.862 | 0.853 | 0.833 |
SC | 5% | 0.666 | 0.829 | 0.847 | 0.771 | 0.643 | 0.810 | 0.846 | 0.695 |
50% | 0.777 | 0.922 | 0.926 | 0.897 | 0.785 | 0.921 | 0.933 | 0.897 |
95% | 0.866 | 0.965 | 0.961 | 0.954 | 0.886 | 0.967 | 0.965 | 0.960 |
MV | 0.931 | 0.916 | 0.917 | 0.922 | 0.861 | 0.905 | 0.886 | 0.872 |
YGP | 5% | 0.699 | 0.817 | 0.805 | 0.773 | 0.133 | 0.145 | 0.793 | 0.139 |
50% | 0.851 | 0.951 | 0.955 | 0.934 | 0.878 | 0.954 | 0.962 | 0.931 |
95% | 0.898 | 0.978 | 0.978 | 0.972 | 0.931 | 0.984 | 0.986 | 0.979 |
MV | 0.929 | 0.921 | 0.911 | 0.912 | 0.872 | 0.910 | 0.890 | 0.869 |