Airborne Lidar Survey, Density-Based Clustering, and Ancient Maya Settlement in the Upper Usumacinta River Region of Mexico and Guatemala
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Settlement Distributions and Densities
3.2. Agricultural Intensification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golden, C.; Scherer, A.K.; Muñoz, A.R.; Vásquez, R. Piedras Negras and Yaxchilan: Divergent Political Trajectories in Adjacent Maya Polities. Lat. Am. Antiq. 2008, 19, 249–274. [Google Scholar] [CrossRef]
- Golden, C.; Scherer, A.K. Territory, Trust, Growth and Collapse in Classic Period Maya Kingdoms. Curr. Anthropol. 2013, 54, 397–435. [Google Scholar] [CrossRef]
- Golden, C.; Scherer, A.K. Landscapes of Warfare, Détente, and Trade in the Maya West. In Monumental Landscapes: How the Maya Shaped Their World; Houk, B., Powis, T., Arroyo, B., Eds.; University of Florida Press: Gainesville, FL, USA, 2020; pp. 218–241. [Google Scholar]
- Scherer, A.K.; Golden, C. Revisiting Maler’s Usumacinta: Recent Archaeological Investigation in Chiapas, Mexico. Precolumbia Mesoweb Monographs; Precolumbia Mesoweb Press: San Francisco, CA, USA, 2012; Volume 1, 86p. [Google Scholar]
- Martin, S. Ancient Maya Politics: A Political Anthropology of the Classic Period 150—900 CE; Cambridge University Press: New York, NY, USA, 2020. [Google Scholar]
- Martin, S.; Grube, N. Chronicle of the Maya Kings and Queens: Deciphering the Dynasties of the Ancient Maya, 2nd ed.; Thames and Hudson: New York, NY, USA, 2008. [Google Scholar]
- Chase, A.F.; Chase, D.Z.; Weishampel, J.F.; Drake, J.B.; Shrestha, R.L.; Slatton, K.C.; Awe, J.J.; Carter, W.E. Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. J. Archaeol. Sci. 2011, 38, 387–398. [Google Scholar] [CrossRef]
- Canuto, M.A.; Estrada-Belli, F.; Garrison, T.G.; Houston, S.D.; Acuña, M.J.; Kováč, M.; Marken, D.; Nondédéo, P.; Auld-Thomas, L.; Castanet, C.; et al. Ancient Lowland Maya Complexity as Revealed by Airborne Laser Scanning of Northern Guatemala. Science 2018, 361, eaau0137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, W.; Murtha, T.; Golden, C.; Anaya Hernández, A.; Scherer, A.; Morell-Hart, S.; Almeyda Zambrano, A.; Broadbent, E.; Brown, M. The Lowland Maya Settlement Landscape: Environmental LiDAR and Ecology. J. Archaeol. Sci. Rep. 2020, 33, 102543. [Google Scholar] [CrossRef]
- Chase, A.S.Z.; Chase, D.Z.; Chase, A.F. LiDAR for Archaeological Research and the Study of Historical Landscapes. In Sensing the Past; Masini, N., Soldovieri, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 16, pp. 89–100. [Google Scholar]
- Inomata, T.; Triadan, D.; Vázquez López, V.A.; Fernandez-Diaz, J.C.; Omori, T.; Méndez Bauer, M.B.; García Hernández, M.; Beach, T.; Cagnato, C.; Aoyama, K.; et al. Monumental Architecture at Aguada Fénix and the Rise of Maya Civilization. Nature 2020, 582, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Houston, S.D.; Escobedo, H.; Child, M.; Golden, C.; Muñoz, R. The Moral Community: Maya Settlement Transformation at Piedras Negras, Guatemala. In The Social Construction of Ancient Cities; Smith, M.L., Ed.; Smithsonian Institution Press: Washington, DC, USA, 2003; pp. 212–253. [Google Scholar]
- Muñoz, A.R. Power, Practice, and Production: Technological Change in the Late Classic Ceramics of Piedras Negras, Guatemala. Ph.D. Thesis, Department of Anthropology, University of Arizona, Tucson, AZ, USA, 2006. [Google Scholar]
- Scherer, A.K.; Golden, C. War in the West: History, Landscape, and Classic Maya Conflict. In Embattled Bodies, Embattled Places: War in Precolumbian Mesoamerica and the Andes; Scherer, A.K., Verano, J., Eds.; Dumbarton Oaks: Washington, DC, USA, 2014; pp. 57–87. [Google Scholar]
- Alcover Firpi, O. Conflict, Defense, and Cooperation at Macabilero, Peten, Guatemala. Ph.D. Thesis, Department of Anthropology, Brown University, Providence, RI, USA, 2020. [Google Scholar]
- Schroder, W. Cycles of Defence on the Piedras Negras Kingdom Periphery: Landscape Patrimony at the Fortified Hilltop Community of El Infiernito, Chiapas. Landsc. Res. 2021, 46, 1–18. [Google Scholar] [CrossRef]
- Golden, C.; Scherer, A.K.; Houston, S.; Schroder, W.; Morell-Hart, S.; Jiménez Álvarez, S.d.P.; Kollias, G.V.; Talavera, M.Y.R.; Matsumoto, M.; Dobereiner, J.; et al. Centering the Classic Maya Kingdom of Sak Tz‘i’. J. Field Archaeol. 2020, 45, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.E. Politics of the Maya Court: Hierarchy and Change in the Late Classic Period; University of Oklahoma Press: Norman, OK, USA, 2013. [Google Scholar]
- Zender, M.U. A Study of Classic Maya Priesthood. Ph.D. Thesis, Department of Anthropology, University of Calgary, Calgary, AB, Canada, 2004. [Google Scholar]
- Houston, S.D. Pehk and ‘Parliaments’. Maya Decipherment: Ideas on Ancient Maya Writing and Iconography. Available online: https://decipherment.wordpress.com/2014/10/07/pehkand-parliaments/ (accessed on 19 March 2020).
- Golden, C.; Scherer, A.K.; Kingsley, M.; Houston, S.; Escobedo, H. The Life and Afterlife of the Classic Period Piedras Negras Kingdom. In Ritual, Violence, and the Fall of the Classic Maya Kings; Iannone, G., Houk, B.A., Schwake, S.A., Eds.; University Press of Florida: Talahassee, FL, USA, 2016; pp. 108–133. [Google Scholar]
- Evans, D. Airborne Laser Scanning as a Method for Exploring Long-Term Socio-Ecological Dynamics in Cambodia. J. Archaeol. Sci. 2016, 74, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Štular, B.; Eichert, S.; Lozić, E. Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox. Remote Sens. 2021, 13, 3225. [Google Scholar] [CrossRef]
- Štular, B.; Lozić, E.; Eichert, S. Airborne LiDAR-Derived Digital Elevation Model for Archaeology. Remote Sens. 2021, 13, 1855. [Google Scholar] [CrossRef]
- Fernandez-Diaz, J.C.; Carter, W.E.; Shrestha, R.L.; Glennie, C. Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sens. 2014, 6, 9951–10001. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Sartori, M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens. 2016, 8, 936. [Google Scholar] [CrossRef] [Green Version]
- Aliphat Fernández, M.M. Classic Maya Landscape in the Upper Usumacinta River Valley. Ph.D. Thesis, Department of Anthropology, University of Calgary, Calgary, AB, Canada, 1994. [Google Scholar]
- Aliphat Fernández, M.M. Arqueología y Paisajes del Alto Usumacinta. Arqueol. Mex. 1996, 4, 24–29. [Google Scholar]
- Štular, B.; Lozić, E. Comparison of Filters for Archaeology-Specific Ground Extraction from Airborne LiDAR Point Clouds. Remote Sens. 2020, 12, 3025. [Google Scholar] [CrossRef]
- Lozić, E.; Štular, B. Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing. Geosciences 2021, 11, 26. [Google Scholar] [CrossRef]
- Grammer, B.; Draganits, E.; Gretscher, M.; Muss, U. LiDAR Guided Archaeological Survey of a Mediterranean Landscape: Lessons from the Ancient Greek Polis of Kolophon (Ionia, Western Anatolia). Archaeol. Prospect. 2017, 24, 311–333. [Google Scholar] [CrossRef] [Green Version]
- Štular, B.; Kokalj, Ž.; Oštir, K.; Nuninger, L. Visualization of Lidar-Derived Relief Models for Detection of Archaeological Features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Zakšek, K.; Oštir, K. Visualizations of Lidar Derived Relief Models. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Oxford, UK; London, UK, 2013; pp. 100–114. [Google Scholar]
- Pingel, T.J.; Clarke, K.; Ford, A. Bonemapping: A LiDAR Processing and Visualization Technique in Support of Archaeology under the Canopy. Cartogr. Geogr. Inf. Sci. 2015, 42, 18–26. [Google Scholar] [CrossRef]
- Chiba, T.; Kaneta, S.-I.; Suzuki, Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2008, 37, 1071–1076. [Google Scholar]
- Kokalj, Ž.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice; Založba ZRC: Ljubljana, Slovenia, 2017. [Google Scholar]
- Thompson, A.E. Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations. Remote Sens. 2020, 12, 2838. [Google Scholar] [CrossRef]
- Beach, T.; Luzzadder-Beach, S.; Krause, S.; Guderjan, T.; Valdez, F.; Fernandez-Diaz, J.C.; Eshleman, S.; Doyle, C. Ancient Maya Wetland Fields Revealed under Tropical Forest Canopy from Laser Scanning and Multiproxy Evidence. Proc. Natl. Acad. Sci. USA 2019, 116, 21469–21477. [Google Scholar] [CrossRef] [Green Version]
- Garrison, T.G.; Houston, S.; Alcover Firpi, O. Recentering the Rural: Lidar and Articulated Landscapes among the Maya. J. Anthropol. Archaeol. 2019, 53, 133–146. [Google Scholar] [CrossRef]
- Horn, S.W.; Ford, A. Beyond the Magic Wand: Methodological Developments and Results from Integrated Lidar Survey at the Ancient Maya Center El Pilar. STAR Sci. Technol. Archaeol. Res. 2019, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Reese-Taylor, K.; Hernández, A.A.; Esquivel, F.A.F.; Monteleone, K.; Uriarte, A.; Carr, C.; Acuña, H.G.; Fernandez-Diaz, J.C.; Peuramaki-Brown, M.; Dunning, N. Boots on the Ground at Yaxnohcah: Ground-Truthing LiDAR in a Complex Tropical Landscape. Adv. Archaeol. Pract. 2016, 4, 314–338. [Google Scholar] [CrossRef]
- Inomata, T.; Pinzón, F.; Ranchos, J.L.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.C.; Aoyama, K.; Yonenobu, H. Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Cap, B.; Yaeger, J.; Brown, M.K. Fidelity Tests of Lidar Data for the Detection of Ancient Maya Settlement in the Upper Belize River Valley, Belize. Res. Rep. Belizean Archaeol. 2018, 15, 39–51. [Google Scholar]
- Webster, D.; Kirker, J. Arqueología del Paisaje: Transecto entre Piedras Negras y El Porvenir. In Proyecto Arqueologico Piedras Negras: Informe Preliminar No. 1, Primera Temporada 1997; Escobedo, H.L., Houston, S.D., Eds.; Proyecto Arqueológico Piedras Negras: Guatemala City, Guatemala, 1997; pp. 185–206. [Google Scholar]
- Houston, S.D.; Escobedo, H.; Forsyth, D.; Hardin, P.; Webster, D.L.; Wright, L.E. On the River of Ruins: Explorations at Piedras Negras, Guatemala, 1997. Mexicon 1998, 20, 16–21. [Google Scholar]
- Nelson, Z. Urban. Development at Piedras Negras, Guatemala: Agriculture, Population, and Settlement; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2006; 572p. [Google Scholar]
- Ashmore, W.A. Some Issues of Method and Theory in Lowland Maya Settlement Archaeology. In Lowland Maya Settlement Patterns; Ashmore, W.A., Ed.; University of New Mexico Press: Albuquerque, NM, USA, 1981; pp. 37–69. [Google Scholar]
- Ashmore, W.A.; Willey, G.R. A Historical Introduction to the Study of Lowland Maya Settlement Patterns. In Lowland Maya Settlement Patterns; Ashmore, W., Ed.; University of New Mexico: Albuquerque, NM, USA, 1981; pp. 3–18. [Google Scholar]
- Rice, D.S.; Culbert, T.P. Historical Contexts for Population Reconstruction in the Maya Lowlands. In Precolumbian Population History in the Maya Lowlands; Culbert, T.P., Rice, D.S., Eds.; University of New Mexico Press: Albuquerque, NM, USA, 1990; pp. 1–36. [Google Scholar]
- Ashmore, W.A. Ode to a Dragline: Demographic Reconstructions at Classic Quirigua. In Precolumbian Population History in the Maya Lowlands; Culbert, T.P., Rice, D.S., Eds.; University of New Mexico Press: Albuquerque, NM, USA, 1990; pp. 63–82. [Google Scholar]
- Ringle, W.M.; Gallareta Negrón, T.; May Ciau, R.; Seligson, K.E.; Fernandez-Diaz, J.C.; Ortegón Zapata, D. Lidar Survey of Ancient Maya Settlement in the Puuc Region of Yucatan, Mexico. PLoS ONE 2021, 16, e0249314. [Google Scholar] [CrossRef]
- VanValkenburgh, P.; Dufton, J.A. Big Archaeology: Horizons and Blindspots. J. Field Archaeol. 2020, 45, S1–S7. [Google Scholar] [CrossRef] [Green Version]
- McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 1–2. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Campello, R.J.G.B.; Moulavi, D.; Zimek, A.; Sander, J. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 2015, 10, 1–51. [Google Scholar] [CrossRef]
- Braymer-Hayes, K.E. A Spatial Analysis of Ceramics in Northwestern Alaska: Studying Pre-Contact Gendered Use of Space. Master’s Thesis, Department of Anthropology, Portland State University, Portland, OR, USA, 2018. [Google Scholar]
- Caspari, G.; Jendryke, M. Archsphere—A Cluster Algorithm for Archaeological Applications. J. Archaeol. Sci. Rep. 2017, 14, 181–188. [Google Scholar] [CrossRef]
- Ducke, B. Spatial Cluster Detection in Archaeology: Current Theory and Practice. In Mathematics and Archaeology; Barcelo, J.A., Bodanovic, I., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 366–382. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Bonnier, A.; Finné, M.; Weiberg, E. Examining Land-Use through GIS-Based Kernel Density Estimation: A Re-Evaluation of Legacy Data from the Berbati-Limnes Survey. J. Field Archaeol. 2019, 44, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.J.; Beardah, C.C.; Wright, R.V. Some Archaeological Applications of Kernel Density Estimates. J. Archaeol. Sci. 1997, 24, 347–354. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Amirinejad, G.; Donehue, P.; Baker, D. Ambiguity at the Peri-Urban Interface in Australia. Land Use Policy 2018, 78, 472–480. [Google Scholar] [CrossRef]
- Simon, D. Urban Environments: Issues on the Peri-Urban Fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Inomata, T. Plazas, Performers, and Spectators: Political Theaters of the Classic Maya. Curr. Anthropol. 2006, 47, 805–842. [Google Scholar] [CrossRef]
- Johnson, K.D.; Terry, R.E.; Jackson, M.W.; Golden, C. Ancient Soil Resources of the Usumacinta River Region, Guatemala. J. Archaeol. Sci. 2007, 34, 1117–1129. [Google Scholar] [CrossRef]
- Fernández, F.G.; Johnson, K.D.; Terry, R.E.; Nelson, S.D.; Webster, D.L. Soil Resources of the Ancient Maya at Piedras Negras, Guatemala. Soil Sci. Soc. Am. J. 2005, 69, 2020–2032. [Google Scholar] [CrossRef]
- Krause, S.; Beach, T.P.; Luzzadder-Beach, S.; Cook, D.; Bozarth, S.R.; Valdez, F., Jr.; Guderjan, T.H. Tropical Wetland Persistence through the Anthropocene: Multiproxy reconstruction of environmental change in a Maya agroecosystem. Anthropocene 2021, 34, 100284. [Google Scholar] [CrossRef]
- Liendo Stuardo, R. La Organización de la Producción Agrícola en un Centro Maya Clásico: Patrón de Asentamiento en la Región de Palenque, Chiapas, México; Instituto de Antropología e Historia and the University of Pittsburgh: Mexico City, Mexico, 2002. [Google Scholar]
- Yaeger, J.; Brown, M.K.; Cap, B. Locating and Dating Sites Using Lidar Survey in a Mosaic Landscape in Western Belize. Adv. Archaeol. Pract. 2016, 4, 339–356. [Google Scholar] [CrossRef]
- Chase, A.F.; Chase, D.Z. The Ancient Maya City: Anthropogenic Landscapes, Settlement Archaeology, and Caracol, Belize. In Research Reports in Belizean Archaeology; Morris, J., Betty, S., Thompson, G., Eds.; National Institute of Culture and History: Belmopan, Belize, 2016; Volume 13, pp. 3–14. [Google Scholar]
- Beach, T.; Dunning, N.P. Ancient Maya Terracing and Modern Conservation in the Peten Rain Forest of Guatemala. J. Soil Water Conserv. 1995, 50, 138–145. [Google Scholar]
- Lobato, R. Terrazas Prehispánicas en la Región del Río Usumacinta y su Importancia en la Agricultura Maya. Estud. De Cult. Maya 1988, 17, 19–58. [Google Scholar]
- Fedick, S.L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use; University of Utah Press: Salt Lake City, UT, USA, 1996. [Google Scholar]
- Turner, B.L.; Sabloff, J.A. Classic Period collapse of the Central Maya Lowlands: Insights about human–environment relationships for sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 13908–13914. [Google Scholar] [CrossRef] [Green Version]
- Hutson, S.R.; Welch, J.A. Roadwork: Long-Distance Causeways at Uci, Yucatan, Mexico. Lat. Am. Antiq. 2021, 32, 1–21. [Google Scholar] [CrossRef]
- Stanton, T.W.; Ardren, T.; Barth, N.C.; Fernandez-Diaz, J.C.; Rohrer, P.; Meyer, D.; Miller, S.J.; Magnoni, A.; Pérez, M. ‘Structure’ Density, Area, and Volume as Complementary Tools to Understand Maya Settlement: An Analysis of Lidar Data along the Great Road between Coba and Yaxuna. J. Archaeol. Sci. Rep. 2020, 29, 102178. [Google Scholar] [CrossRef]
- Chase, A.S.Z.; Weishampel, J. Using Lidar and GIS to Investigate Water and Soil Management in the Agricultural Terracing at Caracol, Belize. Adv. Archaeol. Pract. 2016, 4, 357–370. [Google Scholar] [CrossRef]
- Macrae, S.; Iannone, G. Understanding Ancient Maya Agricultural Terrace Systems through Lidar and Hydrological Mapping. Adv. Archaeol. Pract. 2016, 4, 371–392. [Google Scholar] [CrossRef] [Green Version]
- Harrison-Buck, E.; Willis, M.D.; Walker, C.P.; Murata, S.; Burg, M.B.; Chase, A.F.; Chase, D.Z. From Urban Core to Vacant Terrain Defining the Heterotopia of Maya Monumental Landscapes at the Crossroads of the Middle Belize River Valley. In Approaches to Monumental Landscapes of the Ancient Maya, 1st ed.; Houk, B.A., Arroyo, B., Powis, T.G., Eds.; University Press of Florida: Gainesville, FL, USA, 2020; pp. 85–108. [Google Scholar]
- Scherer, A.K.; Wright, L.E.; Yoder, C.J. Bioarchaeological Evidence for Social and Temporal Differences in Subsistence at Piedras Negras, Guatemala. Lat. Am. Antiq. 2007, 18, 85–104. [Google Scholar] [CrossRef]
- Roche Recinos, A. Regional Production and Exchange of Stone Tools in the Maya Polity of Piedras Negras, Guatemala. Ph.D. Thesis, Department of Anthropology, Brown University, Providence, RI, USA, 2021. [Google Scholar]
- Golden, C.; Scherer, A.K.; Schroder, W.; Vella, C.; Roche Recinos, A. Decentralizing the Economies of the Maya West. In Nuts and Bolts of the Real “Business” of Ancient Maya Exchange; Masson, M.A., Freidel, D.A., Demarest, A.A., Eds.; University Press of Florida, Tallahassee: Gainesville, FL, USA, 2020; pp. 403–433. [Google Scholar]
- Carrasco Vargas, R.; Baqueiro, M.C. The Murals of Chiik Nahb Structure Sub1-4, Calakmul, Mexico. In Maya Archaeology 2; Golden, C., Houston, S.D., Skidmore, J., Eds.; Precolumbia Mesoweb Press: San Francisco, CA, USA, 2012; pp. 8–59. [Google Scholar]
- Blanton, R.E. Anthropological Studies of Cities. Annu. Rev. Anthropol. 1976, 5, 249–264. [Google Scholar] [CrossRef]
- Scherer, A.K.; Golden, C. Water in the West: Chronology and Collapse of the Western Maya River Kingdoms. In The Great Maya Drought in Cultural Context; Iannone, G., Ed.; University of Colorado Press: Boulder, CO, USA, 2014; pp. 207–229. [Google Scholar]
- Lucero, L.J. The Collapse of the Classic Maya: A Case for the Role of Water Control. Am. Anthropol. 2002, 104, 814–826. [Google Scholar] [CrossRef]
- Scarborough, V.L.; Dunning, N.P.; Tankersley, K.B.; Carr, C.; Weaver, E.; Grazioso, L.; Lane, B.; Jones, J.G.; Buttles, P.; Valdez, F.; et al. Water and Sustainable Land Use at the Ancient Tropical City of Tikal, Guatemala. Proc. Natl. Acad. Sci. USA 2012, 109, 12408–12413. [Google Scholar] [CrossRef] [Green Version]
- Erickson, C.L.; Walker, J.H. Precolumbian Causeways and Canals as Landesque Capital. In Landscapes of Movement: Trails, Paths, and Roads in Anthropological Perspective; Snead, J.E.E., Clark, L., Darling, J.A., Eds.; University of Press: Philadelphia, PA, USA, 2009; pp. 232–252. [Google Scholar]
- Fletcher, R. Low-Density, Agrarian-Based Urbanism: Scale, Power, and Ecology. In The Comparative Archaeology of Complex Societies; Smith, M.E., Ed.; Cambridge University Press: Cambridge, UK; London, UK, 2011; pp. 285–320. [Google Scholar]
- Smith, M.E.; Ortman, S.G.; Lobo, J.; Ebert, C.E.; Thompson, A.E.; Prufer, K.M.; Stuardo, R.L.; Rosenswig, R.M. The Low-Density Urban Systems of the Classic Period Maya and Izapa: Insights from Settlement Scaling Theory. Lat. Am. Antiq. 2020, 32, 1–18. [Google Scholar]
- Isendahl, C. Agro-Urban Landscapes: The Example of Maya Lowland Cities. Antiquity 2012, 86, 1112–1125. [Google Scholar] [CrossRef]
- Olson, J.M.; Smith, M.E. Material Expressions of Wealth and Social Class at Aztec-Period Sites in Morelos, Mexico. Anc. Mesoam. 2016, 27, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Caso Barrera, L.; Fernández, M.A. Cacao, Vanilla and Annatto: Three Production and Exchange Systems in the Southern Maya lowlands, XVI-XVII Centuries. J. Lat. Am. Geogr. 2006, 5, 29–52. [Google Scholar] [CrossRef]
High Probability Density Range Method (HPD): INTCAL13 | ||
---|---|---|
Variables: δ13C = −6.6 o/oo | ||
Laboratory number Beta-539723 | ||
Conventional radiocarbon age 2480 ± 30 BP | ||
95.4% probability | ||
−94.90% | 774–482 cal BC | (2723–2431 cal BP) |
−0.50% | 441–434 cal BC | (2390–2383 cal BP) |
68.2% probability | ||
−47.90% | 671–542 cal BC | (2620–2491 cal BP) |
−11.10% | 756–728 cal BC | (2705–2677 cal BP) |
−5.60% | 694–679 cal BC | (2643–2628 cal BP) |
−3.60% | 717–706 cal BC | (2666–2655 cal BP) |
Adjustment | Min | Low | Middle | High | Max |
---|---|---|---|---|---|
Invisible or Hidden Structures | 110.0% | 110.0% | 110.0% | 110.0% | 110.0% |
Contemporaneity of Occupation | 75.0% | 80.0% | 83.0% | 87.0% | 90.0% |
Residential Structures | 75.0% | 80.0% | 81.1% | 83.5% | 85.7% |
Late Classic | 80.0% | 83.0% | 87.5% | 92.0% | 95.0% |
Persons per structure | 4 | 4.37 | 4.89 | 5.4 | 5.6 |
PopIndex (for Late Classic) | 1.98 | 2.55 | 3.16 | 3.97 | 4.51 |
Polygon | Polygon Area (km2) | Structs. | Str/km2 | Min | Low | Middle | High | Max |
Total | ~331.11 | 5220 | 15.8 | 10,335.6 | 13,311.0 | 16,495.2 | 20,723.4 | 23,542.2 |
Core Cluster | Polygon area (km2) | Structs. | Str/km2 | MinPop | LowPop | MidPop | HighPop | MaxPop |
Piedras Negras | 0.91 | 600 | 659.3 | 1188.0 | 1530.0 | 1896.0 | 2382.0 | 2706.0 |
Lacanja Tzeltal | 0.37 | 187 | 505.4 | 370.3 | 476.9 | 590.9 | 742.4 | 843.4 |
Santo Domingo | 0.20 | 87 | 435.0 | 172.3 | 221.9 | 274.9 | 345.4 | 392.4 |
Texcoco | 0.16 | 57 | 356.3 | 112.9 | 145.4 | 180.1 | 226.3 | 257.1 |
La Mar | 0.30 | 97 | 323.3 | 192.1 | 247.4 | 306.5 | 385.1 | 437.5 |
Esmeralda | 0.67 | 159 | 237.3 | 314.8 | 405.5 | 502.4 | 631.2 | 717.1 |
Fajardo | 0.58 | 126 | 217.2 | 249.5 | 321.3 | 398.2 | 500.2 | 568.3 |
El Tunel | 1.05 | 180 | 171.4 | 356.4 | 459.0 | 568.8 | 714.6 | 811.8 |
El Cayo | 1.41 | 132 | 93.6 | 261.4 | 336.6 | 417.1 | 524.0 | 595.3 |
San Antonio la Sombra | 3.45 | 202 | 58.6 | 400.0 | 515.1 | 638.3 | 801.9 | 911.0 |
La Pasadita | 4.02 | 178 | 44.3 | 352.4 | 453.9 | 562.5 | 706.7 | 802.8 |
Core + Peri-Urban Cluster | Polygon area (km2) | Structs. | Str/km2 | MinPop | LowPop | MidPop | HighPop | MaxPop |
Piedras Negras | 12.16 | 1023 | 84.1 | 2025.5 | 2608.7 | 3232.7 | 4061.3 | 4613.7 |
La Mar | 5.61 | 571 | 101.8 | 1130.6 | 1456.1 | 1804.4 | 2266.9 | 2575.2 |
Lacanja Tzeltal | 8.50 | 235 | 27.7 | 465.3 | 599.3 | 742.6 | 933.0 | 1059.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golden, C.; Scherer, A.K.; Schroder, W.; Murtha, T.; Morell-Hart, S.; Fernandez Diaz, J.C.; Jiménez Álvarez, S.d.P.; Alcover Firpi, O.; Agostini, M.; Bazarsky, A.; et al. Airborne Lidar Survey, Density-Based Clustering, and Ancient Maya Settlement in the Upper Usumacinta River Region of Mexico and Guatemala. Remote Sens. 2021, 13, 4109. https://doi.org/10.3390/rs13204109
Golden C, Scherer AK, Schroder W, Murtha T, Morell-Hart S, Fernandez Diaz JC, Jiménez Álvarez SdP, Alcover Firpi O, Agostini M, Bazarsky A, et al. Airborne Lidar Survey, Density-Based Clustering, and Ancient Maya Settlement in the Upper Usumacinta River Region of Mexico and Guatemala. Remote Sensing. 2021; 13(20):4109. https://doi.org/10.3390/rs13204109
Chicago/Turabian StyleGolden, Charles, Andrew K. Scherer, Whittaker Schroder, Timothy Murtha, Shanti Morell-Hart, Juan Carlos Fernandez Diaz, Socorro del Pilar Jiménez Álvarez, Omar Alcover Firpi, Mark Agostini, Alexandra Bazarsky, and et al. 2021. "Airborne Lidar Survey, Density-Based Clustering, and Ancient Maya Settlement in the Upper Usumacinta River Region of Mexico and Guatemala" Remote Sensing 13, no. 20: 4109. https://doi.org/10.3390/rs13204109