Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Remote-Sensing Data
2.2.2. Field Survey Data
2.2.3. ALOS/PALSAR Data Pre-Processing
3. Methodology
3.1. Differential Digital Elevation Model (DEM) Algorithm
3.2. Coherent Amplitude Algorithm
3.3. Coherent Phase-Amplitude Algorithm
3.4. Three-Stage Random Volume over Ground Algorithm (RVoG_3)
- (1)
- Line fitting by least square method. Linear fitting was performed on the complex plane and the intersection points between the straight line and the unit circle were calculated. Generally, there were two intersections.
- (2)
- Ground points determination. The ground points were judged by the coherence value farthest from HV polarization.
- (3)
- Vegetation height estimation. First, the complex coherence coefficient was multiplied by to remove the phase of the ground point. Then, the forest height and attenuation coefficient were obtained from a look-up table.
4. Results
4.1. Canopy Height Estimation Results
4.2. Optimized Canopy Height Estimation Considering Decoherence
4.3. Optimized RVoG_3 Algorithm Considering Terrain
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stenseth, N.C. Ecosystem dynamics of the boreal forest: The Kluane project. Nature 2002, 416, 679–680. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, H.Z.; Moriya, K.; Sakai, T.; Cao, C.X. Monitoring of post-fire forest regeneration under different restoration treatments based on ALOS/PALSAR data. New For. 2018, 49, 105–121. [Google Scholar] [CrossRef]
- Morford, S.L.; Houlton, B.Z.; Dahlgren, R.A. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 2011, 477, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, J.; Cao, C.X.; Tian, H.J. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 2018, 16, e00479. [Google Scholar] [CrossRef]
- Izzawati, I.H.W.; Wallington, E.D.; Woodhouse, I.H. Forest height retrieval from commercial X-band SAR products. IEEE Trans. Geosci. Remote Sens. 2006, 44, 863–870. [Google Scholar] [CrossRef]
- Laurin, G.V.; Ding, J.; Disney, M.; Bartholomeus, H.; Valentini, R. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101899. [Google Scholar] [CrossRef]
- Liao, Z.; He, B.B.; Quan, X.; Van Dijk, A.I.J.M.; Qiu, S.; Yin, C. Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data. Remote Sens. Environ. 2019, 221, 489–507. [Google Scholar] [CrossRef]
- Liang, S.L. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ghulam, A.; Porton, I.; Freeman, K. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm. ISPRS J. Photogramm. Remote Sens. 2014, 88, 174–192. [Google Scholar] [CrossRef]
- Neeff, T.; Dutra, L.V.; dos Santos, J.R.; Freitas, C.D.; Araujo, L.S. Tropical forest stand table modeling from SAR data. For. Ecol. Manag. 2003, 186, 159–170. [Google Scholar] [CrossRef]
- Chen, W.; Cao, C.X.; He, Q.S.; Guo, H.D.; Zhang, H.; Li, R.Q.; Zheng, S.; Xu, M.; Gao, M.X.; Zhao, J.; et al. Quantitative estimation of the shrub canopy LAI from atmosphere-corrected HJ-1 CCD data in Mu Us Sandland. Sci. China Earth Sci. 2010, 53, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sens. 2011, 3, 2494–2528. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.X.; Bao, Y.F.; Xu, M.; Chen, W.; Zhang, H.; He, Q.S.; Li, Z.Y.; Guo, H.D.; Li, J.H.; Li, X.W. Retrieval of forest canopy attributes based on Geometric-Optical model using airborne LiDAR and optical remote sensing data. Int. J. Remote Sens. 2012, 33, 692–709. [Google Scholar] [CrossRef]
- Shimoni, M.; Borghys, D.; Heremans, R.; Perneel, C.; Acheroy, M. Fusion of PolSAR and PolInSAR data for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 169–180. [Google Scholar] [CrossRef]
- Tahraoui, S.; Clemente, C.; Pallotta, L.; Soraghan, J.J.; Ouarzeddine, M. Covariance Symmetries Detection in PolInSAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6927–6939. [Google Scholar] [CrossRef]
- Brigot, G.; Simard, M.; Colin-Koeniguer, E.; Boulch, A. Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LIDAR-Derived Features. Remote Sens. 2019, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Y.Q.; Ren, C.Y.; Zhang, B.; Wang, Z.M. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest Kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Ghasemi, N.V.; Tolpekin, A.; Stein, A. Estimating Tree Heights Using Multibaseline PolInSAR Data With Compensation for Temporal Decorrelation, Case Study: AfriSAR Campaign Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3464–3477. [Google Scholar] [CrossRef]
- Xie, J.W.; Suo, Z.Y.; Li, Z.F.; Wang, Y.K. High-precision Digital Surface Model Inversion Approach in Forest Region Based on PolInSAR. J. Elec. Inform. Tech. 2019, 41, 293–301. [Google Scholar]
- Managhebi, T.; Maghsoudi, Y.M.; Zoej, J.V. A Volume Optimization Method to Improve the Three-Stage Inversion Algorithm for Forest Height Estimation Using PolInSAR Data. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1214–1218. [Google Scholar] [CrossRef]
- Balzter, H.; Rowland, C.S.; Saich, P. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens. Environ. 2007, 108, 224–239. [Google Scholar] [CrossRef]
- Breidenbach, J.; Koch, B.; Kaendler, G.; Kleusberg, A. Quantifying the influence of slope, aspect, crown shape and stem density on the estimation of tree height at plot level using lidar and InSAR data. Int. J. Remote Sens. 2008, 29, 1511–1536. [Google Scholar] [CrossRef]
- Arnaubec, A.; Roueff, A.; Dubois-Fernandez, P.C.; Refregier, P. Influence of the nature of a priori knowledge on the precision of vegetation height estimation in polarimetric SAR interferometry. In Proceedings of the European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; VDE: Berlin, Germany, 2012. [Google Scholar]
- Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Yamada, H.; Yamaguchi, Y.; Rodriguez, E.; Kim, Y.; Boerner, W.M. Polarimetric SAR interferometry for forest analysis based on the ESPRIT algorithm. IEEE Trans. Electron. 2001, E84C, 1917–1924. [Google Scholar]
- Lee, S.K.; Kugler, F.; Papathanassiou, K.; Hajnsek, I. Multibaseline polarimetric SAR interferometry forest height inversion approaches. In Proceedings of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 24–28 January 2011; ESA: Frascati, Italy, 2011. [Google Scholar]
- Cloude, S.R.; Papathanassiou, K.P. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc. Radar Sonar Navig. 2003, 150, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Angiuli, E.; Del Frate, F.; Della Vecchia, A.; Lavalle, M.; Solimini, D.; Licciardi, G. Inversion algorithms comparison using L-band simulated polarimetric interferometric data for forest parameters estimation. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Li, X.W.; Guo, H.D.; Liao, J.J. Retrieval of surface vegetation parameters based on spacecraft polarization interferometric radar data. J. Remote. Sens. 2002, 6, 424–429. [Google Scholar]
- Yu, D.Y.; Dong, G.W.; Yang, J. Forest tree height inversion based on interferometric polarization SAR data. J. Tsinghua Univ. Nat. Sci. Ed. 2005, 3, 334–336. [Google Scholar]
- Zhou, G.Y.; Xiong, T.; Zhang, W.J.; Yang, J. Tree height inversion method based on polarization interferometric SAR data. J. Tsinghua Univ. Nat. Sci. Ed. 2009, 4, 510–513. [Google Scholar]
- Ghasemi, N.; Tolpekin, V.; Stein, A. A modified model for estimating tree height from PolInSAR with compensation for temporal decorrelation. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 313–322. [Google Scholar] [CrossRef]
- Biondi, F. A new maximum likelihood polarimetric interferometric synthetic aperture radar coherence change detection (ML-PolInSAR-CCD). Int. J. Remote Sens. 2019, 40, 5158–5178. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; van Zyl, J.J. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci. 1996, 31, 1449–1485. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Siqueira, P.R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci. 2000, 35, 141–177. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, M.; Wang, Z.Q.; Zhao, L.F. Forest-height inversion using repeat-pass spaceborne polInSAR data. Sci. China Earth Sci. 2014, 57, 1314–1324. [Google Scholar] [CrossRef]
- Ballester-Berman, J.D.; Vicente-Guijalba, F.; Lopez-Sanchez, J.M. A Simple RVoG Test for PolInSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Sportouche, H.; Roueff, A.; Dubois-Fernandez, P.C. Precision of Vegetation Height Estimation Using the Dual-Baseline PolInSAR System and RVoG Model with Temporal Decorrelation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4126–4137. [Google Scholar] [CrossRef]
- Praks, J.; Hallikamen, M.; Kugler, F.; Papathanassiou, K.P. X-band extinction in boreal forest: Estimation by using E-SAR POLInSAR and HUTSCAT. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Garestier, F.; Toan, T.L. Forest modeling for height inversion using single-baseline InSAR/Pol-InSAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1528–1539. [Google Scholar] [CrossRef]
- Neumann, M.; Ferro-Famil, L.; Reigber, A. Estimation of Forest Structure, Ground, and Canopy Layer Characteristics from Multibaseline Polarimetric Interferometric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1086–1104. [Google Scholar] [CrossRef] [Green Version]
- Roueff, A.; Arnaubec, A.; Dubois-Fernandez, P.C.; Refregier, P. Cramer–Rao Lower Bound Analysis of Vegetation Height Estimation With Random Volume Over Ground Model and Polarimetric SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1115–1119. [Google Scholar] [CrossRef]
- Feng, Q.; Zhou, L.; Chen, E.; Liang, X.; Zhao, L.; Zhou, Y. The Performance of Airborne C-Band PolInSAR Data on Forest Growth Stage Types Classification. Remote Sens. 2017, 9, 955. [Google Scholar] [CrossRef] [Green Version]
- Khati, U.; Singh, G.; Kumar, S. Potential of Space-Borne PolInSAR for Forest Canopy Height Estimation Over India-A Case Study Using Fully Polarimetric L-, C-, and X-Band SAR Data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2018, 11, 2406–2416. [Google Scholar] [CrossRef]
- Managhebi, T.; Maghsoudi, Y.; Valadan Zoej, M.J. Four-Stage Inversion Algorithm for Forest Height Estimation Using Repeat Pass Polarimetric SAR Interferometry Data. Remote Sens. 2018, 10, 1174. [Google Scholar] [CrossRef] [Green Version]
No. | Dataset Name | Acquisition Date & Time | Format | SNR |
---|---|---|---|---|
73 | PASL1100703160622521312040013 | 16 March 2007 06:22 | DRSDAC-PLR L1.1 | 65.2 |
75 | PASL1100705010622521312040015 | 1 May 2007 06:22 | DRSDAC-PLR L1.1 | 38.2 |
93 | PASL1100903210623171312040014 | 21 March 2009 06:23 | DRSDAC-PLR L1.1 | 91.8 |
95 | PASL1100905060623391312040016 | 6 May 2009 06:23 | DRSDAC-PLR L1.1 | 185.3 |
TM73 | LT50460282007088PAC01 | 29 March 2007 10:50 | TIF | -- |
TM75 | LT50460282007152PAC01 | 1 June 2007 10:50 | TIF | -- |
PolInSAR Image Pair | Spatial Baseline Distance (m) | Top Baseline Distance (m) | H2pi (m) | Temporal Baseline Distance (Days) | Kz |
---|---|---|---|---|---|
73–75 | 593.71 | 3727.91 | 61.22 | 46 | 0.103 |
75–95 | 1706.35 | 3727.91 | 21.31 | 736 | 0.295 |
73–93 | 1311.49 | 3727.91 | 27.72 | 736 | 0.227 |
93–95 | 198.91 | 3727.91 | 185.69 | 46 | 0.034 |
Polarization Mode | 3 | 7 | 11 | 15 | 19 | 23 |
---|---|---|---|---|---|---|
mean_amplitude | ||||||
HH | 0.574 | 0.408 | 0.380 | 0.375 | 0.375 | 0.376 |
HV | 0.563 | 0.383 | 0.339 | 0.323 | 0.319 | 0.318 |
VV | 0.588 | 0.413 | 0.372 | 0.356 | 0.351 | 0.347 |
HH-VV | 0.558 | 0.367 | 0.332 | 0.328 | 0.327 | 0.328 |
mean_phase | ||||||
HH | −0.095 | −0.136 | −0.210 | −0.244 | −0.262 | −0.278 |
HV | −0.071 | −0.153 | −0.193 | −0.176 | −0.153 | −0.140 |
VV | −0.152 | −0.098 | −0.086 | −0.095 | −0.117 | −0.148 |
HH-VV | −0.051 | −0.071 | −0.059 | −0.079 | −0.101 | −0.126 |
SD_amplitude | ||||||
HH | 0.210 | 0.165 | 0.104 | 0.067 | 0.051 | 0.046 |
HV | 0.204 | 0.143 | 0.109 | 0.097 | 0.088 | 0.079 |
VV | 0.209 | 0.154 | 0.118 | 0.103 | 0.090 | 0.082 |
HH-VV | 0.213 | 0.167 | 0.119 | 0.086 | 0.074 | 0.068 |
SD_phase | ||||||
HH | 1.198 | 0.730 | 0.415 | 0.325 | 0.275 | 0.241 |
HV | 1.271 | 0.803 | 0.550 | 0.387 | 0.283 | 0.237 |
VV | 1.243 | 0.833 | 0.613 | 0.505 | 0.450 | 0.387 |
HH-VV | 1.333 | 0.907 | 0.514 | 0.374 | 0.298 | 0.234 |
Polarization Mode | 3 | 7 | 11 | 15 | 19 | 23 |
---|---|---|---|---|---|---|
mean_amplitude | ||||||
HH | 0.701 | 0.649 | 0.641 | 0.637 | 0.635 | 0.633 |
HV | 0.720 | 0.666 | 0.658 | 0.653 | 0.649 | 0.646 |
VV | 0.740 | 0.694 | 0.687 | 0.688 | 0.691 | 0.692 |
HH-VV | 0.697 | 0.639 | 0.632 | 0.630 | 0.630 | 0.631 |
mean_phase | ||||||
HH | 0.474 | 0.476 | 0.461 | 0.458 | 0.459 | 0.464 |
HV | 0.470 | 0.474 | 0.485 | 0.492 | 0.495 | 0.498 |
VV | 0.606 | 0.609 | 0.606 | 0.601 | 0.602 | 0.602 |
HH-VV | 0.550 | 0.527 | 0.511 | 0.508 | 0.508 | 0.509 |
SD_amplitude | ||||||
HH | 0.190 | 0.116 | 0.086 | 0.075 | 0.068 | 0.064 |
HV | 0.186 | 0.118 | 0.075 | 0.057 | 0.046 | 0.041 |
VV | 0.178 | 0.121 | 0.099 | 0.083 | 0.071 | 0.057 |
HH-VV | 0.188 | 0.115 | 0.078 | 0.061 | 0.055 | 0.053 |
SD_phase | ||||||
HH | 0.648 | 0.283 | 0.182 | 0.131 | 0.109 | 0.097 |
HV | 0.629 | 0.274 | 0.181 | 0.139 | 0.116 | 0.100 |
VV | 0.560 | 0.264 | 0.174 | 0.138 | 0.118 | 0.105 |
HH-VV | 0.636 | 0.267 | 0.168 | 0.131 | 0.106 | 0.092 |
Influence Factor | Level | Indicator | DEM_dif | DEM_pd | Coh | RVoG_3 | PC | PC_pd |
---|---|---|---|---|---|---|---|---|
Overall | Overall | R2 | 0.00 | 0.06 | 0.07 | 0.07 | 0.01 | 0.00 |
RMSE | 12.96 | 11.55 | 12.96 | 13.66 | 7.47 | 8.10 | ||
Mean value | −0.13 | 2.98 | 45.55 | 46.45 | 22.30 | 27.11 | ||
Absolute error | −22.00 | −18.88 | 23.68 | 23.68 | 0.44 | 5.24 | ||
Range slope level | <−5 | R2 | 0.10 | 0.42 | 0.61 | 0.61 | 0.00 | 0.09 |
RMSE | 13.59 | 12.53 | 12.90 | 12.90 | 7.62 | 7.64 | ||
Mean value | 1.01 | 3.71 | 44.91 | 44.91 | 21.49 | 26.60 | ||
Absolute error | −22.98 | −20.27 | 20.93 | 20.93 | −2.50 | 2.62 | ||
[−5, 5] | R2 | 0.05 | 0.00 | 0.02 | 0.00 | 0.01 | 0.01 | |
RMSE | 12.11 | 10.81 | 14.46 | 9.15 | 7.92 | 8.62 | ||
Mean value | 0.21 | 3.00 | 45.34 | 32.25 | 23.50 | 27.31 | ||
Absolute error | −24.91 | −22.12 | 20.22 | 7.13 | −1.62 | 2.19 | ||
>5 | R2 | 0.00 | 0.12 | 0.18 | 0.38 | 0.02 | 0.08 | |
RMSE | 14.20 | 12.17 | 13.00 | 6.65 | 6.51 | 7.54 | ||
Mean value | −1.97 | 2.22 | 46.61 | 31.28 | 20.73 | 27.22 | ||
Absolute error | −25.64 | −21.46 | 22.94 | 7.60 | −2.94 | 3.54 | ||
Coherence coefficient | <0.5 | R2 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 |
RMSE | 13.21 | 11.82 | 13.40 | 7.90 | 7.33 | 7.88 | ||
Mean value | −0.16 | 2.74 | 46.12 | 32.07 | 22.15 | 27.20 | ||
Absolute error | −30.42 | −27.52 | 15.87 | 1.82 | −8.11 | −3.06 | ||
>0.5 | R2 | 0.01 | 0.50 | 0.67 | 0.58 | 0.09 | 0.34 | |
RMSE | 6.92 | 5.55 | 14.65 | 8.69 | 8.14 | 8.70 | ||
Mean value | 1.56 | 6.92 | 37.99 | 25.67 | 24.42 | 24.91 | ||
Absolute error | −9.92 | −4.55 | 26.51 | 14.19 | 12.94 | 13.44 |
Influence Factor | Level | Indicator | DEM_dif | DEM_pd | Coh | PC | PC_pd |
---|---|---|---|---|---|---|---|
Overall | Overall | R2 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 |
RMSE | 12.36 | 11.02 | 49.33 | 29.05 | 42.25 | ||
Mean value | 1.27 | 30.75 | 113.83 | 67.39 | 98.00 | ||
Absolute error | −16.75 | 12.72 | 95.81 | 49.37 | 79.98 | ||
Range slope level | <−5 | R2 | 0.06 | 0.04 | 0.04 | 0.00 | 0.08 |
RMSE | 14.07 | 10.99 | 50.38 | 33.46 | 41.33 | ||
Mean value | −0.30 | 31.27 | 114.81 | 75.87 | 92.11 | ||
Absolute error | −18.88 | 12.69 | 96.23 | 57.29 | 73.53 | ||
[−5, 5] | R2 | 0.00 | 0.05 | 0.01 | 0.00 | 0.01 | |
RMSE | 11.26 | 12.32 | 49.81 | 28.50 | 43.94 | ||
Mean value | 0.80 | 30.83 | 112.76 | 65.89 | 100.74 | ||
Absolute error | −15.37 | 14.66 | 96.59 | 49.72 | 84.57 | ||
>5 | R2 | 0.30 | 0.09 | 0.17 | 0.02 | 0.01 | |
RMSE | 12.71 | 7.88 | 48.87 | 26.24 | 40.78 | ||
Mean value | 3.85 | 30.05 | 115.14 | 62.67 | 98.03 | ||
Absolute error | −17.44 | 8.75 | 93.85 | 41.38 | 76.74 | ||
Coherence coefficient | <0.5 | R2 | 0.30 | 0.16 | −0.04 | 0.06 | −0.05 |
RMSE | 12.52 | 9.93 | 51.81 | 29.48 | 42.55 | ||
Mean value | 1.93 | 26.88 | 119.06 | 69.23 | 99.56 | ||
Absolute error | −15.89 | 9.05 | 101.23 | 51.41 | 81.73 | ||
>0.5 | R2 | 0.01 | 0.14 | 0.00 | 0.00 | 0.00 | |
RMSE | 12.28 | 11.97 | 45.93 | 28.72 | 42.35 | ||
Mean value | 0.71 | 36.05 | 106.59 | 64.91 | 98.78 | ||
Absolute error | −17.70 | 17.63 | 88.17 | 46.49 | 80.36 |
Coherence Coefficient | Indicator | Coh | RVoG_3 | Range Slope Level | Indicator | Coh | RVoG_3 |
---|---|---|---|---|---|---|---|
Overall | R2 | 0.08 | 0.02 | <−5 | R2 | 0.54 | 0.49 |
RMSE | 11.93 | 8.02 | RMSE | 11.37 | 7.78 | ||
Mean value | 42.62 | 30.28 | Mean value | 41.80 | 29.54 | ||
Absolute error | 17.20 | 4.86 | Absolute error | 14.78 | 2.53 | ||
<0.5 | R2 | 0.00 | 0.00 | [−5, 5] | R2 | 0.00 | 0.01 |
RMSE | 11.80 | 7.85 | RMSE | 12.84 | 9.18 | ||
Mean value | 44.13 | 30.47 | Mean value | 42.87 | 30.94 | ||
Absolute error | 17.78 | 4.12 | Absolute error | 18.39 | 6.46 | ||
>0.5 | R2 | 0.60 | 0.60 | >5 | R2 | 0.10 | 0.03 |
RMSE | 8.83 | 6.42 | RMSE | 10.89 | 5.65 | ||
Mean value | 34.91 | 28.21 | Mean value | 42.97 | 29.70 | ||
Absolute error | 12.81 | 6.12 | Absolute error | 17.27 | 4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zheng, Q.; Xiang, H.; Chen, X.; Sakai, T. Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sens. 2021, 13, 174. https://doi.org/10.3390/rs13020174
Chen W, Zheng Q, Xiang H, Chen X, Sakai T. Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sensing. 2021; 13(2):174. https://doi.org/10.3390/rs13020174
Chicago/Turabian StyleChen, Wei, Qihui Zheng, Haibing Xiang, Xu Chen, and Tetsuro Sakai. 2021. "Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data" Remote Sensing 13, no. 2: 174. https://doi.org/10.3390/rs13020174
APA StyleChen, W., Zheng, Q., Xiang, H., Chen, X., & Sakai, T. (2021). Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sensing, 13(2), 174. https://doi.org/10.3390/rs13020174