Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Methodology
2.2.2. Data Preparation
2.2.3. Calculating Forest Landscape Metrics
2.2.4. Extracting Landscape Pattern Types
2.2.5. Extracting Frequent Sequential Pattern
Spatiotemporal Distribution of Typical Frequent Sequential Patterns
Short Patterns about Fragmentation and De-Fragmentation
2.2.6. Long-Term Evolution Process and Trend of Forest Landscape Pattern
3. Results
3.1. Spatial Characteristics and Interannual Trends of Different Landscape Pattern Types
3.2. Extracting Frequent Sequential Pattern
3.2.1. Spatiotemporal Distribution of Typical Frequent Sequential Patterns
3.2.2. Short Patterns about Fragmentation and De-Fragmentation
3.3. Long-Term Evolution Process and Trend of Forest Landscape Pattern
4. Discussion
4.1. Value and Applicability of Frequent Sequential Patterns
4.2. Evaluation of Landscape Stability
4.3. Research Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baskent, E.Z. Controlling spatial structure of forested landscapes: A case study towards landscape management. Landsc. Ecol. 1999, 14, 83–97. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Aragón, R.; Oesterheld, M.; Irisarri, G.; Texeira, M. Stability of ecosystem functioning and diversity of grasslands at the landscape scale. Landsc. Ecol. 2011, 26, 1011–1022. [Google Scholar] [CrossRef]
- Hess, G.R.; Koch, F.H.; Rubino, M.J.; Eschelbach, K.A.; Drew, C.A.; Favreau, J.M. Comparing the potential effectiveness of conservation planning approaches in central North Carolina, USA. Biol. Conserv. 2005, 128, 358–368. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Yan, D.; Bai, Z.; Liu, X. Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability 2020, 12, 1907. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Bai, Z.; Zhou, W.; Zhang, X. Characteristic analysis and pattern evolution on landscape types in typical compound area of mine agriculture urban in Shanxi Province, China. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Xun, B.; Yu, D.; Liu, Y.; Hao, R.; Sun, Y. Quantifying isolation effect of urban growth on key ecological areas. Ecol. Eng. 2014, 69, 46–54. [Google Scholar] [CrossRef]
- Nordén, B.; Dahlberg, A.; Brandrud, T.E.; Fritz, Ö.; Ejrnæs, R.; Ovaskainen, O. Effects of ecological continuity on species richness and composition in forests and woodlands: A review. Écoscience 2014, 21, 34–45. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Müller, K.; Steinmeier, C.; Ewald, K.C.; Ghazoul, J. Implementing Landscape Fragmentation as an Indicator in the Swiss Monitoring System of Sustainable Development (MOnet). J. Environ. Manag. 2007, 88, 737–751. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Braaten, J.; Copass, C.; Antonova, N.; Jordan, C.; Nelson, P. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Shimizu, K.; Ahmed, O.S.; Ponce-Hernandez, R.; Ota, T.; Win, Z.C.; Mizoue, N.; Yoshida, S. Attribution of Disturbance Agents to Forest Change Using a Landsat Time Series in Tropical Seasonal Forests in the Bago Mountains, Myanmar. Forests 2017, 8, 218. [Google Scholar] [CrossRef]
- Hu, W.-W.; Wang, G.-X.; Deng, W. Advance in Research of the Relationship between Landscape Patterns and Ecological Processes. Prog. Geog. 2008, 27, 18–24. [Google Scholar]
- Bojie, F.; Liang, D.; Lu, N. Landscape Ecology: Coupling of Pattern, Process, and Scale. Chin. Geogr. Sci. 2011, 21, 385–391. [Google Scholar]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.-S.; Fu, C.-F.; Zhang, G. Evaluation on the Forest Landscape Stability of Liuxi River National Forest Park. J. Cent. South Univ. For. Technol. 2007, 1, 88–92. [Google Scholar]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spati-otemporal Patterns and Modifiable Areal Unit Problems of the Landscape Ecological Risk in Coastal Areas: A Case Study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.; White, J.; Coops, N.C.; Pickell, P.D.; Bolton, D.K. Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sens. Environ. 2019, 222, 65–77. [Google Scholar] [CrossRef]
- Sharma, K.; Robeson, S.M.; Thapa, P.; Saikia, A. Land-use/land-cover change and forest fragmentation in the Jigme Dorji National Park, Bhutan. Phys. Geogr. 2017, 38, 18–35. [Google Scholar] [CrossRef]
- Hargis, C.D.; Bissonette, J.A.; Turner, D.L. The influence of forest fragmentation and landscape pattern on American martens. J. Appl. Ecol. 1999, 36, 157–172. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Wang, Z.; Zhang, T.; Liu, X. Remote Sensing Based Spatial-Temporal Moni-toring of the Changes in Coastline Mangrove Forests in China over the Last 40 Years. Remote. Sens. 2021, 13, 1986. [Google Scholar] [CrossRef]
- Suyadi, G.J.; Lundquist, C.J.; Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuarine Coast. Shelf Sci. 2018, 215, 1–10. [Google Scholar] [CrossRef]
- Jaeger, J.A. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H.; Estreguil, C.; Kozak, J.; Wade, T.G.; Wickham, J.D. Mapping Spatial Patterns with Morphological Image Processing. Landsc. Ecol. 2007, 22, 171–177. [Google Scholar] [CrossRef]
- Zhao, R.; Xie, Z.; Zhang, L.; Zhu, W.; Li, J.; Liang, D. Assessment of wetland fragmentation in the middle reaches of the Heihe River by the type change tracker model. J. Arid Land 2014, 7, 177–188. [Google Scholar] [CrossRef]
- Cosentino, B.J.; Schooley, R.L. Dispersal and Wetland Fragmentation. 2018. Volume 13. Available online: https://landscapemosaic.org/documents/cosentino_wetland_2018.pdf (accessed on 25 March 2021).
- Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sens. 2020, 12, 3191. [Google Scholar] [CrossRef]
- Mukherjee, K.; Pal, S. Hydrological and landscape dynamics of floodplain wetlands of the Diara region, Eastern India. Ecol. Indic. 2021, 121, 106961. [Google Scholar] [CrossRef]
- Yu, L.; Meiling, L.; Xiangnan, L.; Wenfu, Y.; Wenwen, W. Characterising Three Decades of Evolution of Forest Spatial Pattern in a Major Coal-Energy Province in Northern China Using Annual Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102254. [Google Scholar]
- Xiao, F.; Gao, G.; Shen, Q.; Wang, X.; Ma, Y.; Lü, Y.; Fu, B. Spatio-temporal characteristics and driving forces of landscape structure changes in the middle reach of the Heihe River Basin from 1990 to 2015. Landsc. Ecol. 2019, 34, 755–770. [Google Scholar] [CrossRef]
- Wang, X.; Blanchet, F.G.; Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Usher, M. Markovian Approaches to Ecological Succession. J. Anim. Ecol. 1979, 48, 4170. [Google Scholar] [CrossRef]
- Van Hulst, R. On the dynamics of vegetation: Markov chains as models of succession. Vegetatio 1979, 40, 3–14. [Google Scholar] [CrossRef]
- Pastor, J.; Sharp, A.; Wolter, P. An application of Markov models to the dynamics of Minnesota’s forests. Can. J. For. Res. 2005, 35, 3011–3019. [Google Scholar] [CrossRef]
- Hogeweg, P. Cellular Automata as a Paradigm for Ecological Modeling. Appl. Math. Comput. 1988, 27, 81–100. [Google Scholar] [CrossRef]
- Lett, C.; Silber, C.; Dubé, P.; Walter, J.-M.; Raffy, M. Forest Dynamics: A Spatial Gap Model Simulated on a Cellular Au-tomata Network. Can. J. Remote. Sens. 1999, 25, 403–411. [Google Scholar] [CrossRef]
- Geri, F.; Rocchini, D.; Chiarucci, A. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landsc. Urban Plan. 2010, 95, 46–53. [Google Scholar] [CrossRef]
- Brown, D.G.; Duh, J.-D.; A Drzyzga, S. Estimating Error in an Analysis of Forest Fragmentation Change Using North American Landscape Characterization (NALC) Data. Remote Sens. Environ. 2000, 71, 106–117. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J.; Xu, C. Four decades of land cover and forest connectivity study in Zambia—An object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 97–109. [Google Scholar] [CrossRef]
- Li, H.; Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 2004, 19, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Crews-Meyer, K.A. Agricultural landscape change and stability in northeast Thailand: Historical patch-level analysis. Agric. Ecosyst. Environ. 2004, 101, 155–169. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Gardner, R.H.; O’Neill, R.V.; Kratz, T.K. A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landsc. Ecol. 1993, 8, 213–227. [Google Scholar] [CrossRef]
- Wright, A.P.; Wright, A.T.; McCoy, A.B.; Sittig, D.F. The use of sequential pattern mining to predict next prescribed medications. J. Biomed. Inform. 2015, 53, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, R.; Srikant, R. Mining Sequential Patterns. In Proceedings of the Eleventh International Conference on Data Engineering, Taipei, Taiwan, 6–10 March 1995; pp. 3–14. [Google Scholar]
- Shaw, A.A.; Gopalan, N. Finding frequent trajectories by clustering and sequential pattern mining. J. Traffic Transp. Eng. Eng. Ed. 2014, 1, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Wooong, Y.J.; Hwan, B.C.; Young, L.J.; Min, P.Y.; Jun, L.S.; Hyun, L.J. Evaluation of Relationships between Atopic Dermatitis and Infectious Disorders Using Sequential Pattern Mining. World Allergy Organ. J. 2020, 13, 100230. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.; Li, X. Mining sequential patterns of PM2.5 pollution between 338 cities in China. J. Environ. Manag. 2020, 262, 110341. [Google Scholar] [CrossRef]
- Julea, A.; Meger, N.; Bolon, P.; Rigotti, C.; Doin, M.-P.; Lasserre, C.; Trouve, E.; Lazarescu, V.N. Unsupervised Spatiotemporal Mining of Satellite Image Time Series Using Grouped Frequent Sequential Patterns. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1417–1430. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Chen, X.; Yang, W. Trend Analysis of Rainfall Time Series in Shanxi Province, Northern China (1957–2019). Water 2020, 12, 2335. [Google Scholar] [CrossRef]
- Peng, H.; Liu, S.; Xing, Y.; Yue, X. Environmental Risk and Policy Choices in an Energy Intensive Region of China—An Empirical Study in Shanxi Province. IEEE Access 2020, 8, 63134–63143. [Google Scholar] [CrossRef]
- Miao, Z.; Marrs, R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. J. Environ. Manag. 2000, 59, 205–215. [Google Scholar] [CrossRef]
- Prokopová, M.; Salvati, L.; Egidi, G.; Cudlín, O.; Včeláková, R.; Plch, R.; Cudlín, P. Envi-sioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability. Sustainability 2019, 11, 4654. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, H.; Gong, P.; Biging, G.; Xin, Q.; Chen, Y.; Yang, J.; Liu, C. Quanti-fying Multi-Decadal Change of Planted Forest Cover Using Airborne Lidar and Landsat Imagery. Remote. Sens. 2016, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Riitters, H.K.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A Factor Analysis of Landscape Pattern and Structure Metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- McGarigal, K. Fragstats Help; University of Massachusetts: Amherst, MA, USA, 2015; p. 182. [Google Scholar]
- Townshend, J.R.G.; Justice, C.O. The spatial variation of vegetation changes at very coarse scales. Int. J. Remote Sens. 1990, 11, 149–157. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. Int. J. Remote Sens. 1988, 9, 187–236. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Cheng, W.; Zou, L.; Cai, H. Effects of landscape fragmentation on land loss. Remote Sens. Environ. 2018, 209, 253–262. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Martínez, B.; García-Haro, F.J.; Moreno, A.; Gilabert, M. Identification of Ecosystem Functional Types from Coarse Resolution Imagery Using a Self-Organizing Map Approach: A Case Study for Spain. Remote Sens. 2014, 6, 11391–11419. [Google Scholar] [CrossRef] [Green Version]
- Oikonomakis, N.; Ganatsas, P. Land cover changes and forest succession trends in a site of Natura 2000 network (Elatia forest), in northern Greece. For. Ecol. Manag. 2012, 285, 153–163. [Google Scholar] [CrossRef]
- Oikonomakis, N.G.; Ganatsas, P. Secondary forest succession in Silver birch (Betula pendula Roth) and Scots pine (Pinus sylvestris L.) southern limits in Europe, in a site of Natura 2000 network—An ecogeographical approach. For. Syst. 2020, 29, 81–96. [Google Scholar] [CrossRef]
- Xiao, J. Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. J. Geophys. Res. Biogeosciences 2014, 119, 2261–2275. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Solon, J. Spatial Context of Urbanization: Landscape Pattern and Changes between 1950 and 1990 in the Warsaw Metropolitan Area, Poland. Landsc. Urban Plan. 2009, 93, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Bertolo, L.S.; Lima, G.T.; Santos, R.F. Identifying change trajectories and evolutive phases on coastal landscapes. Case study: São Sebastião Island, Brazil. Landsc. Urban Plan. 2012, 106, 115–123. [Google Scholar] [CrossRef]
- Wu, J.; Jelinski, D.E.; Qi, Y. Spatial Pattern Analysis of a Boreal Forest Landscape: Scale Effects and Interpretation. In Proceedings of the VI International Congress of Ecology (INTECOL), Manchester, UK, 21–26 August 1994. [Google Scholar]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, L.; Tang, Y.; Li, Y.; Zhang, Y.; Ye, L.; Zhang, B. Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecol. Indic. 2021, 121, 106985. [Google Scholar] [CrossRef]
Year | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
---|---|---|---|---|---|---|
Count | 34 | 25 | 14 | 13 | 23 | 20 |
Year | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
Count | 35 | 21 | 28 | 21 | 30 | 35 |
Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
Count | 18 | 32 | 19 | 24 | 31 | 23 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Count | 32 | 31 | 20 | 26 | 33 | 25 |
Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
Count | 25 | 29 | 24 | 24 | 37 | 31 |
Index | Clusters | ||||||
---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Davies-Bouldin | 0.38 | 0.46 | 0.47 | 0.48 | 0.50 | 0.48 | 0.49 |
Pattern | Sequence | Relative Support (%) | Confidence(%) | Proportion of Area (%) | Trend |
---|---|---|---|---|---|
pattern 1 | 1111111 | 0.60 | 63.42 | 8.9 | stable |
pattern 2 | 1001111 | 0.26 | 72.60 | 3.9 | fluctuant |
pattern 3 | 3333333 | 0.22 | 98.65 | 3.2 | stable |
pattern 4 | 1000111 | 0.15 | 75.43 | 2.3 | fluctuant |
pattern 5 | 1101111 | 0.14 | 70.79 | 2.1 | fluctuant |
pattern 6 | 1011111 | 0.13 | 73.18 | 2.0 | fluctuant |
pattern 7 | 0000111 | 0.12 | 71.76 | 1.8 | de-fragmentation |
pattern 8 | 0000011 | 0.11 | 80.04 | 1.6 | de-fragmentation |
pattern 9 | 3233333 | 0.10 | 96.33 | 1.3 | fluctuant |
pattern 10 | 1112111 | 0.10 | 53.88 | 1.3 | fluctuant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Yang, Q.; Liu, Z.; Li, Y. Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability. Remote Sens. 2021, 13, 3963. https://doi.org/10.3390/rs13193963
Zhang Y, Liu X, Yang Q, Liu Z, Li Y. Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability. Remote Sensing. 2021; 13(19):3963. https://doi.org/10.3390/rs13193963
Chicago/Turabian StyleZhang, Yue, Xiangnan Liu, Qin Yang, Zhaolun Liu, and Yu Li. 2021. "Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability" Remote Sensing 13, no. 19: 3963. https://doi.org/10.3390/rs13193963
APA StyleZhang, Y., Liu, X., Yang, Q., Liu, Z., & Li, Y. (2021). Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability. Remote Sensing, 13(19), 3963. https://doi.org/10.3390/rs13193963