Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MODIS LST Data
2.2.2. Meteorological Data
2.2.3. Climate Index Data
2.2.4. LUCC Data
2.3. Method
2.3.1. Sen’s Slope Estimator
2.3.2. The Mann–Kendall Test
2.3.3. Random Forest Model
3. Results
3.1. MODIS Product Verification
3.2. LST Spatial Distribution Characteristics
3.3. Seasonal Time Series of LST
3.4. LST Trends
3.5. Importance of Natural and Perceived Factors
3.6. Impact of Land Use/Cover Type on LST
3.7. Influence of Atmospheric Circulation on LST
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.F.; Liao, C.H. Remote Sensing Collaborative Inversion and Assimilation Simulation of Ecological Environment Parameters; Science Press: Beijing, China, 2014. [Google Scholar]
- Walawender, J.P.; Szymanowski, M.; Hajto, M.J. Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data. Pure Appl. Geophys. 2014, 171, 913–940. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Weng, Q.H. Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto Int. 2013, 28, 582–593. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G. Generation of Landsat surface temperature product for China, 2000–2010. Int. J. Remote Sens. 2013, 34, 7369–7375. [Google Scholar] [CrossRef]
- Shen, S.; Leptoukh, G.G.; Romanov, P. Accessing Recent Trend of Land Surface Temperature from Satellite Observations. In Proceedings of the American Geophysical Union (AGU) Fall Meeting, San Francisco, CA, USA, 6 December 2011. [Google Scholar]
- Retamales-Muñoz, G.; Durán-Alarcón, C.; Mattar, C. Recent land surface temperature patterns in Antarctica using satellite andreanalysis data. J. S. Am. Earth Sci. 2019, 95, 102304. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, K. Land surface temperature over global deserts: Means, variability, and trends. J. Geophys. Res. Atmos. 2016, 121, 14344–14357. [Google Scholar] [CrossRef]
- Ezcurra, E. Global Deserts Outlook 2006, Global Environment Outlook (GEO) Series of the United Nations Environment Programme (UNEP), Earthprint. 2006. Available online: http://www.earthprint.com (accessed on 15 April 2021).
- Huang, J.; Yu, H.; Guan, X. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, J.; Huang, W.; Xu, X.; Jin, N. Preliminary study on the relationship between land surface temperature and occurrence of yellow rust in winter wheat. Disaster Adv. 2010, 3, 288–292. [Google Scholar]
- Qiao, L.; Wu, L.R.; Zhang, G.J. Analysis on the characteristics of temporal and spatial changes of surface temperature in China in the past 50 years. Bull. Soil Water Conserv. 2015, 35, 323–326. [Google Scholar]
- Li, X.B. The core field of global environmental change research—International research trends of land use/land cover change. Acta Geogr. Sin. 1996, 6, 553–558. [Google Scholar]
- Abbas, A.; Jin, L.; He, Q.; Lu, B.; Yao, J.; Li, Z. Temporal and spatial variations of the air temperature in the taklamakan desert and surrounding areas. Theor. Appl. Climatol. 2021, 144, 873–884. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional climate change and its effects on river runoff in the tarim basin, china. Hydrol. Process. 2010, 20, 2207–2216. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Wu, Z.; Liu, S.; Di, X. An Outline of Chinese Deserts; Science Press: Beijing, China, 1980. (In Chinese) [Google Scholar]
- Sun, J.; Liu, T. The age of the Taklimakan Desert. Science 2006, 312, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F. Dynamic Monitoring of Desertifcation in the Tarim Basin Based on RS and GIS Techniques [D]; Xinjian Normal University: Urumqi, China, 2017. (In Chinese) [Google Scholar]
- Halik, W.; Mamat, A.; Dang, J.H.; Deng, B.S.H.; Tiyip, T. Suitability analysis of human settlement environment within the Tarim Basin in Northwestern China. Quatern. Int. 2013, 311, 175–180. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Zhou, H.H. Experimental study on water transport observations of desert riparian forests in the lower reaches of the tarim river in china. Int. J. Biometeorol. 2017, 61, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE. Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Minacapilli, M.; Consoli, S.; Vanella, D.; Ciraolo, G.; Motisi, A. A time domain triangle method approach toestimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens. Environ. 2016, 174, 10–23. [Google Scholar] [CrossRef]
- Bai, L.; Long, D.; Yan, L. Estimation of Surface Soil Moisture with Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land. Water Resour. Res. 2019, 55, 1105–1128. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Wu, H.; Leng, P.; Gao, M.; Wang, C. Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 84–92. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- Mu, B.; Li, J.; Yuan, S.; Luo, X.; Dai, G. NAO Index Prediction using LSTM and ConvLSTM Networks Coupled with iscrete Wavelet Transform. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Haijun, Y.; Qiong, Z. On the decadal and interdecadal variability in the pacifc ocean. Adv. Atmos. Sci. 2003, 20, 173–184. [Google Scholar] [CrossRef]
- Aswad, F.K.; Yousif, A.A.; Ibrahim, S.A. Trend Analysis Using Mann-Kendall and Sen’s Slope Estimator Test for Annual and Monthly Rainfall for Sinjar District, Iraq. J. Duhok Univ. 2020, 23, 501–508. [Google Scholar] [CrossRef]
- Gavrilov, M.B.; Tošić, I.; Marković, S.B.; Unkašević, M.; Petrović, P. The analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina, Serbia. Idöjárás 2016, 120, 183–198. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total. Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Liu, Y.; Zhang, Y.; Yu, L.; Chen, Y.; Liu, Y.; Cheng, H.; Liu, Y. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena 2019, 174, 104–116. [Google Scholar] [CrossRef]
- Reyila, K.; Yusuf, M.; Adilai, W.; Jiang, H. Temporal and spatial differentiation characteristics of land surface temperature in Yili River Valley from 2001 to 2014. China Desert 2018, 38, 196–203. [Google Scholar]
- Marcel, U.; Jonas, E.; Christian, H.; Christiane, S.; Martin, H. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-arctic scale. Remote Sens. 2013, 5, 2348–2367. [Google Scholar]
- Zhao, W.; He, J.; Wu, Y.; Xiong, D.; Wen, F.; Li, A. Remote sensing an analysis of land surface temperature trends in the central himalayan region based on modis products. Remote Sens. 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Weng, Q. Seasonal variations in the relationship between landscape pattern and land surface temperature in indianapolis, usa. Environ. Monit. Assessment 2008, 144, 199–219. [Google Scholar]
- Ge, Y.; Abuduwaili, J.; Ma, L.; Wu, N.; Liu, D. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China. Atmos. Res. 2016, 178, 196–206. [Google Scholar] [CrossRef]
- Deng, Y.H.; Wang, S.J.; Bai, X.Y.; Tian, Y.C.; Wu, L.H.; Xiao, J.Y.; Chen, F.; Qiqan, Q. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep. 2018, 8, 641. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Salahi, B.; Masoodian, S.A. On the relationship between MODIS Land Surface Temperature and topography in Iran. Phys. Geogr. 2018, 39, 354–367. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Du, H.Y.; Xu, Y.Q.; Lu, D.B.; Wang, X.Y.; Guo, Z.Y. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total. Environ. 2018, 631, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, F.; Jiang, H.T.; Zhang, Y.J. Research on the Temporal and Spatial Changes of Surface Temperature in the Weigan River-Kuqa River Delta Oasis. Res. Soil Water Conserv. 2013, 20, 151–157. [Google Scholar]
- Reyila, K.; Yusufujiang, R.; Gao, Q. The response of the temporal and spatial distribution of surface temperature in the Yanqi Basin of Xinjiang to LUCC. Trans. Chin. Soc. Agric. Eng. 2016, 32, 259–266. [Google Scholar]
- Ma, Y.G.; Li, H.; Gan, Y.L. Research on the correlation between biophysical parameters and surface temperature of the underlying surface of the oasis in the southern margin of Tarim. Res. Soil Water Conserv. 2011, 1, 170–174, 180. [Google Scholar]
- Reyilai, K. Temporal and Spatial Changes of Surface Temperature in the Middle Part of Tianshan Mountains and Typical Watersheds. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2018. [Google Scholar]
- Fu, W.; Wang, J.; Liu, S. Research on the Distribution Law of Surface Temperature in Tarim Oilfield. Arid. Land Resour. Environ. 2003, 6, 99–102. [Google Scholar]
- Frey, C.M.; Kuenzer, C. Analysing a 13 years modis land surface temperature time series in the mekong basin. Remote Sens. Digit. Image Process. 2015, 22, 119–140. [Google Scholar]
- Wang, X.; Liang, P.; Wu, F. Analysis of regional temperature variation characteristics in the Lancang River Basin in southwestern China. Quat. Int. 2013, 33, 198–206. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Y.; Wu, Z. Spatial and temporal variations of land surface temperature over the Tibetan Plateau based on harmonic analysis. Mt. Res. Dev. 2013, 33, 85–94. [Google Scholar] [CrossRef]
- Salama, M.S.; Van der Velde, R.; Zhong, L.; Ma, Y.; Ofwono, M.; Su, Z. Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Clim. Chang. 2012, 114, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Akinsanola, A.A.; Ishola, K.A. Investigating surface urban heat island characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sens. Appl. Soc. Environ. 2017, 7, 57–68. [Google Scholar] [CrossRef]
- Tomlinson, C.; Chapman, L.; Thornes, J.; Baker, C. Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Julien, Y.; Sobrino, J.A.; Verhoef, W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ. 2006, 103, 43–55. [Google Scholar] [CrossRef]
- Zhang, F.; Kung, H.; Johnson, V.C.; Lagrone, B.I.; Wang, J. Change detection of land surface temperature (lst) and some related parameters using landsat image: A case study of the ebinur lake watershed, xinjiang, china. Wetlands 2018, 38, 65–80. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Xu, Y. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2017, 94, 1–16. [Google Scholar] [CrossRef]
- Woo, S.H.; Kim, B.M.; Jeong, J.H.; Kim, S.J.; Lim, G.H. Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011). J. Geophys. Res. Atmos. 2012, 117, D18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Yang, S.; Wang, H.J.; Zhang, Q. Interdecadal Relationships between the Asian-Pacific Oscillation and Summer Climate Anomalies over Asia, North Pacific, and North America during a Recent 100 Years. J. Clim. 2010, 24, 4793–4799. [Google Scholar] [CrossRef]
- Lensky, I.M.; Dayan, U. Satellite observations of land surface temperature patterns induced by synoptic circulation. Int. J. Climatol. 2015, 35, 189–195. [Google Scholar] [CrossRef]
- Zhuo, H.; Liu, Y.; Jin, J. Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett. 2016, 17, 162–168. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev. Geophys. 2013, 51, 150–185. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Hao, X.; Weihong, L.; Yapeng, C. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar]
- Xu, Z.; Chen, Y.; Li, J. Impact of climate change on water resources in the Tarim River basin. Water Resour. Anagement 2004, 18, 439–458. [Google Scholar] [CrossRef]
- Peng, D.; Wang, X.; Zhao, C. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012. PLoS ONE 2014, 9, e112231. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; He, Q.; Jin, L.; Li, J.; Salam, A.; Lu, B.; Yasheng, Y. Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China. Remote Sens. 2021, 13, 3792. https://doi.org/10.3390/rs13193792
Abbas A, He Q, Jin L, Li J, Salam A, Lu B, Yasheng Y. Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China. Remote Sensing. 2021; 13(19):3792. https://doi.org/10.3390/rs13193792
Chicago/Turabian StyleAbbas, Alim, Qing He, Lili Jin, Jinglong Li, Akida Salam, Bo Lu, and Yierpanjiang Yasheng. 2021. "Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China" Remote Sensing 13, no. 19: 3792. https://doi.org/10.3390/rs13193792
APA StyleAbbas, A., He, Q., Jin, L., Li, J., Salam, A., Lu, B., & Yasheng, Y. (2021). Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China. Remote Sensing, 13(19), 3792. https://doi.org/10.3390/rs13193792