Projecting Future Vegetation Change for Northeast China Using CMIP6 Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Multivariate Regression Analysis
2.3.2. Climate Model Evaluation and Bias Correction
3. Results and Discussion
3.1. GWR Model Performance
3.2. Future Climatic Change
3.2.1. Climate Model Evaluation
3.2.2. Future Changes in Temperature and Precipitation
3.3. Future GSM Vegetation Changes
3.3.1. Future Vegetation Changes Predicted by GWR Models
3.3.2. Future LAI Changes in Sandy Fields
3.3.3. Comparison with ESMs LAI Output
3.4. Research Limitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source ID | Institution ID | Resolution | Country |
---|---|---|---|
BCC-CSM2-MR | BCC | 100 KM | China |
CAMS-CSM1-0 | CAMS | 100 KM | China |
CanESM5 | CCCma | 500 KM | Canada |
EC-Earth3 | EC-Earth-Consortium | 100 KM | Europe |
EC-Earth3-Veg | EC-Earth-Consortium | 100 KM | Europe |
IPSL-CM6A-LR | IPSL | 250 KM | France |
MIROC6 | MIROC | 250 KM | Japan |
MRI-ESM2-0 | MRI | 100 KM | Japan |
CNRM-CM6-1 | CNRM-CERFACS | 250 KM | France |
CNRM-ESM2-1 | CNRM-CERFACS | 250 KM | France |
UKESM1-0-LL | MOHC | 250 KM | UK |
Source ID | Institution ID | Resolution | Country |
---|---|---|---|
ACCESS-ESM1-5 | CSIRO | 250 KM | Australia |
BCC-CSM2-MR | BCC | 100 KM | China |
CESM2-WACCM | NCAR | 100 KM | USA |
CIESM | THU | 100 KM | China |
CMCC-CM2-SR5 | CMCC | 100 KM | Italy |
CanESM5 | CCCma | 500 KM | Canada |
EC-Earth3-Veg | EC-Earth-Consortium | 100 KM | Sweden |
FIO-ESM-2-0 | FIO-QLNM | 100 KM | China |
INM-CM5-0 | INM | 100 KM | Russia |
IPSL-CM6A-LR | IPSL | 250 KM | France |
MPI-ESM1-2-LR | MPI-M | 250 KM | Germany |
References
- Mahowald, N.; Lo, F.; Zheng, Y.; Harrison, L.; Funk, C.; Lombardozzi, D.; Goodale, C. Projections of Leaf Area Index in Earth System Models. Earth Syst. Dyn. 2016, 7, 211–229. [Google Scholar] [CrossRef] [Green Version]
- UNCCD; UNCBD; UNFCCC. Final report. In Proceedings of the Workshop on Forest and Forest Ecosystems: Promoting Synergy in the Three Rio Conventions, Viterbo, Italy, 5–7 April 2004; pp. 5–7. [Google Scholar]
- Xu, H.; Wang, X.; Zhao, C.; Yang, X. Diverse Responses of Vegetation Growth to Meteorological Drought across Climate Zones and Land Biomes in Northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [Google Scholar] [CrossRef]
- Fu, B. Geography: From Knowledge, Science to Decision Making Support. Acta Geogr. Sin. 2017, 72, 1923–1932. [Google Scholar]
- Lamchin, M.; Lee, W.-K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-Term Trend and Correlation between Vegetation Greenness and Climate Variables in Asia Based on Satellite Data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in Satellite-Derived Vegetation Growth Trend in Temperate and Boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, J.; Ouyang, Z. Responses of Landscape Structure to the Ecological Restoration Programs in the Farming-Pastoral Ecotone of Northern China. Sci. Total Environ. 2020, 710, 136311. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, S.-Y.; Hou, S.; Xu, Z.; Lu, H. Normalized Difference Vegetation Index-Based Assessment of Climate Change Impact on Vegetation Growth in the Humid-Arid Transition Zone in Northern China during 1982–2013. Int. J. Climatol. 2019, 39, 5583–5598. [Google Scholar] [CrossRef]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent Ecological Transitions in China: Greening, Browning and Influential Factors. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Z.; Zeng, H.; Zhao, W.; Myneni, R.B. Future Greening of the Earth May Not Be as Large as Previously Predicted. Agric. For. Meteorol. 2020, 292–293, 108111. [Google Scholar] [CrossRef]
- Ouyang, W.; Wan, X.; Xu, Y.; Wang, X.; Lin, C. Vertical Difference of Climate Change Impacts on Vegetation at Temporal-Spatial Scales in the Upper Stream of the Mekong River Basin. Sci. Total Environ. 2020, 701, 134782. [Google Scholar] [CrossRef]
- Anav, A.; Murray-Tortarolo, G.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z. Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models. Remote Sens. 2013, 5, 3637–3661. [Google Scholar] [CrossRef] [Green Version]
- Ziehn, T.; Lenton, A.; Law, R.M.; Matear, R.J.; Chamberlain, M.A. The Carbon Cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1)—Part 2: Historical Simulations. Geosci. Model Dev. 2017, 10, 2591–2614. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative Cooling over the Tibetan Plateau Induced by Vegetation Growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Jiao, K.; Wu, S.; Ma, D.; Zhao, D.; Yin, Y.; Dai, E. Past and Future Effects of Climate Change on Spatially Heterogeneous Vegetation Activity in China. Earth’s Future 2017, 5, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-C.; Huang, Y.; Zhang, H.; Wu, X. Characterization of Elevation and Land Cover Dependent Trends of NDVI Variations in the Hexi Region, Northwest China. J. Environ. Manag. 2019, 232, 1037–1048. [Google Scholar] [CrossRef]
- Jiao, K.; Gao, J.; Liu, Z. Precipitation Drives the NDVI Distribution on the Tibetan Plateau While High Warming Rates May Intensify Its Ecological Droughts. Remote Sens. 2021, 13, 1305. [Google Scholar] [CrossRef]
- Ren, Y.; Yue, P.; Zhang, Q.; Liu, X. Influence of Land Surface Aridification on Regional Monsoon Precipitation in East Asian Summer Monsoon Transition Zone. Theor. Appl. Climatol. 2021, 144, 93–102. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W. Diverse Response of Vegetation Growth to Multi-Time-Scale Drought under Different Soil Textures in China’s Pastoral Areas. J. Environ. Manag. 2020, 274, 110992. [Google Scholar] [CrossRef]
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing Vegetation Dynamics in the Three-North Shelter Forest Region of China Using AVHRR NDVI Data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive Reliance on Afforestation in China’s Arid and Semi-Arid Regions: Lessons in Ecological Restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Zhang, G.; Dong, J.; Xiao, X.; Hu, Z.; Sheldon, S. Effectiveness of Ecological Restoration Projects in Horqin Sandy Land, China Based on SPOT-VGT NDVI Data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Sellers, P.J. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Chen, J.; Zhu, Q.; Li, X.; Chen, M.; Sun, R.; Zhou, Y.; Deng, F.; Xie, D. LAI Inversion Algorithm Based on Directional Reflectance Kernels. J. Environ. Manag. 2007, 85, 638–648. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate Change and the Ecological Responses in Xinjiang, China: Model Simulations and Data Analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.; Denning, A.S. Interactions between the Atmosphere and Terrestrial Ecosystems: Influence on Weather and Climate. Glob. Chang. Biol. 1998, 4, 461–475. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area Index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Winkler, A.J.; Myneni, R.B.; Hannart, A.; Sitch, S.; Haverd, V.; Lombardozzi, D.; Arora, V.K.; Pongratz, J.; Nabel, J.E.; Goll, D.S.; et al. Slow-down of the Greening Trend in Natural Vegetation with Further Rise in Atmospheric CO2. Earth Space Sci. Open Arch. (ESSOAr) 2020. [Google Scholar] [CrossRef]
- Helbig, M.; Waddington, J.M.; Alekseychik, P.; Amiro, B.D.; Aurela, M.; Barr, A.G.; Black, T.A.; Blanken, P.D.; Carey, S.K.; Chen, J.; et al. Increasing Contribution of Peatlands to Boreal Evapotranspiration in a Warming Climate. Nat. Clim. Chang. 2020, 10, 555–560. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S. The ERA-Interim Archive. ERA Rep. Ser. 2009, 1, 1–16. [Google Scholar]
- Berrisford, P.; Kaallberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.; Poli, P.; Sato, H. Atmospheric Conservation Properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, M.; Grizzetti, B.; Meroni, M.; Scoccimarro, E.; Vrieling, A.; Naumann, G.; Toreti, A. Annual Green Water Resources and Vegetation Resilience Indicators: Definitions, Mutual Relationships, and Future Climate Projections. Remote Sens. 2019, 11, 2708. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Knight, M.; Wiggs, G. Remobilization of Southern African Desert Dune Systems by Twenty-First Century Global Warming. Nature 2005, 435, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiao, F.; Yin, J.; Li, T.; Gong, H.; Wang, Z.; Lin, Z. Nonlinear Relationship of Vegetation Greening with Nature and Human Factors and Its Forecast–A Case Study of Southwest China. Ecol. Indic. 2020, 111, 106009. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global Monitoring of Interannual Changes in Vegetation Activities Using NDVI and Its Relationships to Temperature and Precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Foody, G. Geographical Weighting as a Further Refinement to Regression Modelling: An Example Focused on the NDVI–Rainfall Relationship. Remote Sens. Environ. 2003, 88, 283–293. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, J.; Wang, Y.; Liu, J.; Li, S. Exploring Spatially Variable Relationships between NDVI and Climatic Factors in a Transition Zone Using Geographically Weighted Regression. Theor. Appl. Climatol. 2015, 120, 507–519. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Pincus, R.; Batstone, C.P.; Hofmann, R.J.P.; Taylor, K.E.; Glecker, P.J. Evaluating the Present-Day Simulation of Clouds, Precipitation, and Radiation in Climate Models. J. Geophys. Res. Atmos. 2008, 113, D14209. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.; Zhang, X.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 2. Future Climate Projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Toh, Y.Y.; Turner, A.G.; Johnson, S.J.; Holloway, C.E. Maritime Continent Seasonal Climate Biases in AMIP Experiments of the CMIP5 Multimodel Ensemble. Clim. Dyn. 2018, 50, 777–800. [Google Scholar] [CrossRef] [Green Version]
- Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C. Bias Correction of Daily Precipitation Simulated by a Regional Climate Model: A Comparison of Methods. Int. J. Climatol. 2013, 33, 1367–1381. [Google Scholar] [CrossRef] [Green Version]
- Raty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of Delta Change and Bias Correction Methods for Future Daily Precipitation: Intermodel Cross-Validation Using ENSEMBLES Simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Hickler, T.; Eklundh, L.; Seaquist, J.W.; Smith, B.; Ardö, J.; Olsson, L.; Sykes, M.T.; Sjöström, M. Precipitation Controls Sahel Greening Trend. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global Correlation Analysis for NDVI and Climatic Variables and NDVI Trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E.; Sun, G.; Li, J. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-Based Increase in Growth of Temperate Grasslands and Its Responses to Climate Changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Mason, J.; Lu, H.; Zhou, Y.; Miao, X.; Swinehart, J.; Liu, Z.; Goble, R.; Yi, S. Dune Mobility and Aridity at the Desert Margin of Northern China at a Time of Peak Monsoon Strength. Geology 2009, 37, 947–950. [Google Scholar] [CrossRef]
- Usman, U.; Yelwa, S.; Gulumbe, S.; Danbaba, A.; Nir, R. Modelling Relationship between NDVI and Climatic Variables Using Geographically Weighted Regression. J. Math. Sci. Appl. 2013, 1, 24–28. [Google Scholar]
- Gao, J.; Jiao, K.; Wu, S. Investigating the Spatially Heterogeneous Relationships between Climate Factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Chen, D.; Duan, A.; Liu, Y.; Zhou, S.; Guo, D.; Wang, H.; Ju, W. Recent Recovery of the Boreal Spring Sensible Heating over the Tibetan Plateau Will Continue in CMIP6 Future Projections. Environ. Res. Lett. 2019, 14, 124066. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Yi, C.; Fang, W.; Hendrey, G. A Global Study of GPP Focusing on Light-Use Efficiency in a Random Forest Regression Model. Ecosphere 2017, 8, e01724. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Wu, Y.; Wen, J. Future Changes in Precipitation Characteristics in China. Int. J. Climatol. 2019, 39, 3558–3573. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and Prediction of Vegetation Dynamic Changes in China: Past, Present and Future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Wang, X.; Zhang, M.; Chen, W.; Chen, B. Ecological Risk Assessment of Wetland Vegetation under Projected Climate Scenarios in the Sanjiang Plain, China. J. Environ. Manag. 2020, 273, 111108. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Wang, X.; Zhang, Y.; Gu, Y.; Li, L. Impact of Climate Zone Migration on Geographical Distribution of Indigenous Vegetation in Northeast China. IOP Conf. Ser.: Earth Environ. Sci. 2020, 526, 012037. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Yu, M.; Chen, H.; Jiang, Y. Multimodel Future Projections of the Regional Vegetation-Climate System over East Asia: Comparison between Two Ensemble Approaches. J. Geophys. Res. Atmos. 2020, 125, e2019JD031967. [Google Scholar] [CrossRef]
- Yao, N.; Li, L.; Feng, P.; Feng, H.; Li Liu, D.; Liu, Y.; Jiang, K.; Hu, X.; Li, Y. Projections of Drought Characteristics in China Based on a Standardized Precipitation and Evapotranspiration Index and Multiple GCMs. Sci. Total Environ. 2020, 704, 135245. [Google Scholar] [CrossRef]
- Lu, H.; Miao, X.; Zhou, Y.; Mason, J.; Swinehart, J.; Zhang, J.; Zhou, L.; Yi, S. Late Quaternary Aeolian Activity in the Mu Us and Otindag Dune Fields (North China) and Lagged Response to Insolation Forcing. Geophys. Res. Lett. 2005, 32, L21716. [Google Scholar] [CrossRef]
- Wang, F.; Pan, X.; Gerlein-Safdi, C.; Cao, X.; Wang, S.; Gu, L.; Wang, D.; Lu, Q. Vegetation Restoration in N Orthern China: A Contrasted Picture. Land Degrad. Dev. 2020, 31, 669–676. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Z. Identifying Land Restoration Regions and Their Driving Mechanisms in Inner Mongolia, China from 1981 to 2010. J. Arid Environ. 2019, 167, 79–86. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Zhou, S.; Sun, B.; Gao, Z. Did Ecological Engineering Projects Have a Significant Effect on Large-Scale Vegetation Restoration in Beijing-Tianjin Sand Source Region, China? A Remote Sensing Approach. Chin. Geogr. Sci. 2016, 26, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic Analysis of Ecological Environment Combined with Land Cover and NDVI Changes and Implications for Sustainable Urban–Rural Development: The Case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, Y.; Lü, S.; Wang, Q.; Zhang, S.; Xu, J.; Li, R.; Li, S.; Ma, D.; Meng, X.; et al. Evaluation of CMIP5 Earth System Models in Reproducing Leaf Area Index and Vegetation Cover over the Tibetan Plateau. J. Meteorol. Res. 2014, 28, 1041–1060. [Google Scholar] [CrossRef]
- Los, S. Analysis of Trends in Fused AVHRR and MODIS NDVI Data for 1982–2006: Indication for a CO2 Fertilization Effect in Global Vegetation. Glob. Biogeochem. Cycles 2013, 27, 318–330. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.; Peuelas, J. Recent Global Decline of CO2 Fertilization Effects on Vegetation Photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
Time Period | Mean Value (Spatial Ranges) | |
---|---|---|
Temperature/°C | Precipitation/mm | |
Baseline | 20.50 (14.29–27.56) | 419 (66–832) |
MidSSP245 | 23.00 (16.87–29.94) | 465 (83–891) |
MidSSP585 | 23.88 (17.86–30.68) | 484 (87–925) |
LateSSP245 | 23.99 (17.92–30.94) | 481 (89–920) |
LateSSP585 | 26.37 (20.49–33.13) | 522 (104–979) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Wu, S.-Y.; Hou, S.; Xu, Z.; Pang, H.; Lu, H. Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sens. 2021, 13, 3531. https://doi.org/10.3390/rs13173531
Yuan W, Wu S-Y, Hou S, Xu Z, Pang H, Lu H. Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing. 2021; 13(17):3531. https://doi.org/10.3390/rs13173531
Chicago/Turabian StyleYuan, Wei, Shuang-Ye Wu, Shugui Hou, Zhiwei Xu, Hongxi Pang, and Huayu Lu. 2021. "Projecting Future Vegetation Change for Northeast China Using CMIP6 Model" Remote Sensing 13, no. 17: 3531. https://doi.org/10.3390/rs13173531
APA StyleYuan, W., Wu, S. -Y., Hou, S., Xu, Z., Pang, H., & Lu, H. (2021). Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing, 13(17), 3531. https://doi.org/10.3390/rs13173531