Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data
Abstract
1. Introduction
2. Methods
2.1. Ice shelf Detection Using CFAR Method
2.2. Profile Analysis Based Frontal Point Extraction
3. Results and Discussion
3.1. Visual Performance and Comparison of Ice-Shelf Frontal Point Extraction
3.2. Spatio-Temporal Changes in the Ice-Shelf Frontal Line from 2015 to 2021
3.3. Ice Velocity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter-Smith, R.; McKinlay, J.; Fraser, A.D.; Massom, R.A. Coastal complexity of the Antarctic continent. Earth Syst. Sci. Data 2021, 13, 3103–3114. [Google Scholar] [CrossRef]
- Walker, C.C.; Becker, M.K.; Fricker, H.A. A High Resolution, Three-Dimensional View of the D-28 Calving Event from Amery Ice Shelf with ICESat-2 and Satellite Imagery. Geophys. Res. Lett. 2021, 48, e2020GL091200. [Google Scholar] [CrossRef]
- Walker, C.C.; Bassis, J.N.; Fricker, H.A.; Czerwinski, R.J. Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. J. Geophys. Res. Earth Surf. 2013, 118, 2354–2364. [Google Scholar] [CrossRef]
- Walker, C.C.; Bassis, J.N.; Fricker, H.A.; Czerwinski, R.J. Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–2014. J. Glaciol. 2015, 61, 243–252. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G. Multi-track extraction of two-dimensional surface velocity by the combined use of di ff erential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctic. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Pittard, M.L.; Roberts, J.L.; Warner, R.C.; Galton-Fenzi, B.K.; Watson, C.S.; Coleman, R. Flow of the Amery Ice Shelf and its tributary glaciers. In Proceedings of the 18th Australasian Fluid Mechanics Conference, AFMC 2012, Launceston, Australia, 3–7 December 2012; pp. 18–21. [Google Scholar]
- Young, N.W.; Hyland, G. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 2002, 34, 228–234. [Google Scholar] [CrossRef][Green Version]
- Köhler, A.; Nuth, C.; Kohler, J.; Berthier, E.; Weidle, C.; Schweitzer, J. A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophys. Res. Lett. 2016, 43, 12155–12164. [Google Scholar] [CrossRef]
- Fricker, H.A.; Young, N.W.; Allison, I.; Coleman, R. Iceberg calving from the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 2002, 34, 241–246. [Google Scholar] [CrossRef]
- Glasser, N.F.; Scambos, T.A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 2008, 54, 3–16. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Van Den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef]
- Cui, X.; Greenbaum, J.S.; Lang, S.; Zhao, X.; Li, L.; Guo, J.; Sun, B. The Scientific Operations of Snow Eagle 601 in Antarctica in the Past Five Austral Seasons. Remote Sens. 2020, 12, 2994. [Google Scholar] [CrossRef]
- Kachouie, N.N.; Huybers, P.; Schwartzman, A. Localization of mountain glacier termini in Landsat multi-spectral images. Pattern Recognit. Lett. 2013, 34, 94–106. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Ann. Glaciol. 2016, 57, 81–91. [Google Scholar] [CrossRef]
- Jeong, S.; Howat, I.M.; Bassis, J.N. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 2016, 43, 11720–11725. [Google Scholar] [CrossRef]
- Euillades, L.D.; Euillades, P.A.; Riveros, N.C.; Masiokas, M.H.; Ruiz, L.; Pitte, P.; Elefante, S.; Casu, F.; Balbarani, S. Detection of glaciers displacement time-series using SAR. Remote Sens. Environ. 2016, 184, 188–198. [Google Scholar] [CrossRef]
- Wesche, C.; Jansen, D.; Dierking, W. Calving Fronts of Antarctica: Mapping and Classification. Remote Sens. 2013, 5, 6305–6322. [Google Scholar] [CrossRef]
- Baumhoer, C.A.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning. Remote Sens. 2019, 11, 2529. [Google Scholar] [CrossRef]
- Seale, A.; Christoffersen, P.; Mugford, R.I.; O’Leary, M. Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf. 2011, 116, 1847. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, A.; Yadav, J.; Mohan, R. Spatio-temporal changes and prediction of Amery ice shelf, east Antarctica: A remote sensing and statistics-based approach. J. Environ. Manag. 2020, 267, 110648. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. A complete high-resolution coastline of antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sens. 2004, 70, 605–616. [Google Scholar] [CrossRef]
- Borstad, C.; Khazendar, A.; Scheuchl, B.; Morlighem, M.; Larour, E.; Rignot, E. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 2016, 43, 2027–2035. [Google Scholar] [CrossRef]
- Borstad, C.; McGrath, D.; Pope, A. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity. Geophys. Res. Lett. 2017, 44, 4186–4194. [Google Scholar] [CrossRef]
- Rosenau, R.; Scheinert, M.; Dietrich, R. A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sens. Environ. 2015, 169, 1–19. [Google Scholar] [CrossRef]
- Han, L.; Floricioiu, D.; Baessler, M.; Eineder, M. An algorithm for the detection of calving glaciers frontal position from TerraSAR-X imagery. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6171–6174. [Google Scholar] [CrossRef]
- Ni, W.; Yan, W.; Wu, J.; Zheng, G.; Lu, Y. Statistical analysis and modeling of TerraSAR-X images for CFAR based target detection. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 1983–1986. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Lampropoulos, G.A. Optimal CFAR Detection in Weibull Clutter. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 52–64. [Google Scholar] [CrossRef]
- Tao, D.; Doulgeris, A.P.; Brekke, C. A Segmentation-Based CFAR Detection Algorithm Using Truncated Statistics. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2887–2898. [Google Scholar] [CrossRef]
- Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR detection of ship targets in very high resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 811–815. [Google Scholar] [CrossRef]
- Lee, I.K.; Shamsoddini, A.; Li, X.; Trinder, J.C.; Li, Z. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis. ISPRS J. Photogramm. Remote Sens. 2016, 117, 115–125. [Google Scholar] [CrossRef]
- Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. Int. J. Remote Sens. 2017, 38, 355–370. [Google Scholar] [CrossRef]
- Perron, J.T.; Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf. 2013, 38, 570–576. [Google Scholar] [CrossRef]
- Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1685–1697. [Google Scholar] [CrossRef]
- Di Bisceglie, M.; Galdi, C. CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 833–843. [Google Scholar] [CrossRef]
- Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process. 2013, 22, 3791–3806. [Google Scholar] [CrossRef]
- Gil, J.Y.; Kimmel, R. Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1606–1617. [Google Scholar] [CrossRef]
- Mouginot, J.; Scheuch, B.; Rignot, E. Mapping of ice motion in antarctica using synthetic-aperture radar data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef]
Date | Average Distance of Frontal Position Compared with Reference Frontal Line [m] | |||||
---|---|---|---|---|---|---|
Region 1 | Region 2 | Region 3 | ||||
Proposed | Comparison | Proposed | Comparison | Proposed | Comparison | |
2015-03-26 | 26.44 | 156.34 | 38.23 | 145.21 | 12.33 | 33.21 |
2016-03-22 | 28.32 | 143.25 | 44.21 | 165.36 | 9.24 | 32.55 |
2017-03-22 | 22.07 | 166.57 | 39.56 | 165.33 | 8.75 | 27.88 |
2018-03-15 | 26.33 | 124.32 | 45.12 | 154.06 | 13.65 | 24.35 |
2019-03-17 | 26.21 | 156.36 | 40.55 | 168.31 | 7.88 | 30.22 |
2020-03-18 | 23.21 | 137.45 | 35.66 | 144.23 | 10.44 | 25.48 |
2021-03-18 | 24.83 | 147.06 | 37.23 | 135.23 | 8.75 | 27.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Cui, X.; Zhang, Y. Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sens. 2021, 13, 3528. https://doi.org/10.3390/rs13173528
Zhu T, Cui X, Zhang Y. Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sensing. 2021; 13(17):3528. https://doi.org/10.3390/rs13173528
Chicago/Turabian StyleZhu, Tingting, Xiangbin Cui, and Yu Zhang. 2021. "Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data" Remote Sensing 13, no. 17: 3528. https://doi.org/10.3390/rs13173528
APA StyleZhu, T., Cui, X., & Zhang, Y. (2021). Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sensing, 13(17), 3528. https://doi.org/10.3390/rs13173528