Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019
Abstract
:1. Introduction
2. Data and Research Area
2.1. Research Area and Design
2.2. Satellite Imagery
2.3. In Situ Observation
2.4. ECMWF Reanalysis 5 Land Dataset
3. UASIBS–KIER Model
4. Results
5. Discussion
5.1. Solar Resource Potentials
5.2. Applications for the Photovoltaic System
- The plane of array irradiance is not considered.
- The effect of cell temperature on the nameplate efficiency is ignored.
- The peak power of PV module is the same for all grid cells in the model.
- With the aforementioned assumptions, the capacity factor is formulated by Equation (4), as follows:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zelenka, A.; Perez, R.; Seals, R.; Renné, D. Effective Accuracy of Satellite-Derived Hourly Irradiances. Theor. Appl. Climatol. 1999, 62, 199–207. [Google Scholar] [CrossRef]
- Vignola, F.; Harlan, P.; Perez, R.; Kmiecik, M. Analysis of satellite derived beam and global solar radiation data. Sol. Energy 2007, 81, 768–772. [Google Scholar] [CrossRef]
- Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [Google Scholar] [CrossRef] [Green Version]
- Kleissl, J.P. Solar Energy Forecasting and Resource Assessment, 1st ed.; Academic Press: Cambridge, MA, USA, 2013; 2p. [Google Scholar]
- He, G.; Kammen, D.M. Where, when and how much solar is available? A provincial-scale solar resource assessment for China. Renew. Energy 2016, 85, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Wegertseder, P.; Lund, P.; Mikkola, J.; Alvarado, R.G. Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Sol. Energy 2016, 135, 325–336. [Google Scholar] [CrossRef]
- Gilgen, H.; Wild, M.; Ohmura, A. Means and Trends of Shortwave Irradiance at the Surface Estimated from Global Energy Balance Archive Data. J. Clim. 1998, 11, 2042–2061. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Solar Radiation Changes in the United States during the Twentieth Century: Evidence from Sunshine Duration Measurements. J. Clim. 2005, 18, 1503–1512. [Google Scholar] [CrossRef]
- Bishop, J.K.B.; Rossow, W.B. Spatial and temporal variability of global surface solar irradiance. J. Geophys. Res. Ocean. 1991, 96, 16839–16858. [Google Scholar] [CrossRef]
- Bishop, J.K.B.; Rossow, W.B.; Dutton, E.G. Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991. J. Geophy. Res. 1997, 102, 6883–6910. [Google Scholar] [CrossRef]
- Janjai, S.; Pankaew, P.; Laksanaboonsong, J.; Kitichantaropas, P. Estimation of solar radiation over Cambodia from long-term satellite data. Renew. Energy 2011, 36, 1214–1220. [Google Scholar] [CrossRef]
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Haupt, S.E.; Kosović, B. Variable Generation Power Forecasting as a Big Data Problem. IEEE Trans. Sustain. Energy 2017, 8, 725–732. [Google Scholar] [CrossRef]
- Gautier, C.; Diak, G.; Masse, S. A Simple Physical Model to Estimate Incident Solar Radiation at the Surface from GOES Satellite Data. J. Appl. Meteorol. Climatol. 1980, 19, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Moser, W.; Raschke, E. Incident Solar Radiation over Europe Estimated from METEOSAT Data. J. Clim. Appl. Meteorol. 1984, 23, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Noia, M.; Ratto, C.F.; Festa, R. Solar irradiance estimation from geostationary satellite data: I. Statistical models. Sol. Energy 1993, 51, 449–456. [Google Scholar] [CrossRef]
- Pinker, R.T.; Ewing, J.A. Modeling Surface Solar Radiation: Model Formulation and Validation. J. Clim. Appl. Meteorol. 1985, 24, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Pinker, R.T.; Laszlo, I. Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale. J. Appl. Meteorol. 1992, 31, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Leighton, H.G. Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res. 1993, 98, 4919–4930. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ritchey, N.A.; Wilber, A.C.; Whitlock, C.H.; Gibson, G.G.; Stackhouse, P.W. A Climatology of Surface Radiation Budget Derived from Satellite Data. J. Clim. 1999, 12, 2691–2710. [Google Scholar] [CrossRef]
- Pinker, R.T.; Tarpley, J.D.; Laszlo, I.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Lohmann, D.; Cosgrove, B.A.; et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. 2003, 108, 8844. [Google Scholar] [CrossRef]
- Wang, H.; Pinker, R.T. Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res. 2009, 114, D20201. [Google Scholar] [CrossRef]
- Ma, Y.; Pinker, R.T. Modeling shortwave radiative fluxes from satellites. J. Geophys. Res. 2012, 117, D23202. [Google Scholar] [CrossRef]
- Kim, C.K.; Holmgren, W.F.; Stovern, M.; Betterton, E.A. Toward Improved Solar Irradiance Forecasts: Derivation of Downwelling Surface Shortwave Radiation in Arizona from Satellite. Pure Appl. Geophys. 2016, 173, 2535–2553. [Google Scholar] [CrossRef]
- Deneke, H.M.; Feijt, A.J.; Roebeling, R.A. Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties. Remote Sens. Environ. 2008, 112, 3131–3141. [Google Scholar] [CrossRef]
- Journée, M.; Müller, R.; Bertrand, C. Solar resource assessment in the Benelux by merging Meteosat-derived climate data and ground measurements. Sol. Energy 2012, 86, 3561–3574. [Google Scholar] [CrossRef]
- Nikitidou, E.; Kazantzidis, A.; Tzoumanikas, P.; Salamalikis, V.; Bais, A.F. Retrieval of surface solar irradiance, based on satellite-derived cloud information, in Greece. Energy 2015, 90, 776–783. [Google Scholar] [CrossRef]
- Kazantzidis, A.; Nikitidou, E.; Salamalikis, V.; Tzoumanikas, P.; Zagouras, A. New challenges in solar energy resource and forecasting in Greece. Int. J. Sustain. Energy 2018, 37, 428–435. [Google Scholar] [CrossRef]
- Tanahashi, S.; Kawamura, H.; Matsuura, T.; Takahashi, T.; Yusa, H. Improved Estimates of Hourly Insolation from GMS S-VISSR Data. Remote Sens. Environ. 2000, 74, 409–413. [Google Scholar] [CrossRef]
- Janjai, S.; Laksanaboonsong, J.; Nunez, M.; Thongsathitya, A. Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Sol. Energy 2005, 78, 739–751. [Google Scholar] [CrossRef]
- Lu, N.; Liu, R.; Liu, J.; Liang, S. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Blanksby, C.; Bennett, D.; Langford, S. Improvement to an existing satellite data set in support of an Australia solar atlas. Sol. Energy 2013, 98, 111–124. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G. Estimating downward surface shortwave radiation using MTSAT-1R and ground measurements data by Bayesian maximum entropy method. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 1541–1543. [Google Scholar]
- Dehghan, A.; Prasad, A.A.; Sherwood, S.C.; Kay, M. Evaluation and improvement of TAPM in estimating solar irradiance in Eastern Australia. Sol. Energy 2014, 107, 668–680. [Google Scholar] [CrossRef]
- Yeom, J.-M.; Han, K.-S.; Lee, C.-S.; Kim, D.-Y. An Improved Validation Technique for the Temporal Discrepancy when Estimated Solar Surface Insolation Compare with Ground-based Pyranometer: MTSAT-1R Data use. Korean J. Remote Sens. 2008, 24, 605–612. [Google Scholar]
- Lee, K.; Yoo, H.; Levermore, G.J. Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea. Renew. Energy 2013, 57, 190–199. [Google Scholar] [CrossRef]
- Jee, J.-B.; Zo, I.-S.; Lee, K.-T. A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites. Korean J. Remote Sens. 2013, 29, 123–135. [Google Scholar] [CrossRef]
- Zo, I.-S.; Jee, J.-B.; Lee, K.-T. Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pac. J. Atmos. Sci. 2014, 50, 575–584. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, H.-G.; Kang, Y.-H.; Yun, C.-Y. Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery over the Korean Peninsula. Pure Appl. Geophys. 2017, 174, 2773–2792. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, H.-G.; Kang, Y.-H.; Yun, C.-Y.; Lee, Y.G. Intercomparison of Satellite-Derived Solar Irradiance from the GEO-KOMSAT-2A and HIMAWARI-8/9 Satellites by the Evaluation with Ground Observations. Remote Sens. 2020, 12, 2149. [Google Scholar] [CrossRef]
- OGD. Public Data Portal. Available online: https://www.data.go.kr/en/index.do (accessed on 1 March 2021).
- Kikuchi, T.; Kitsuregawa, M. GMS-5 Meteorological Satellite Image Database and Integrated Visualization System. IPSJ Rep. SIG8 (TOD10), 2001; (in Japanese with English abstract). [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (accessed on 1 March 2021).
- Ineichen, P.; Barroso, C.S.; Geiger, B.; Hollmann, R.; Marsouin, A.; Mueller, R. Satellite Application Facilities irradiance products: Hourly time step comparison and validation over Europe. Int. J. Remote Sens. 2009, 30, 5549–5571. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; 1999–104606; Goddard Space Flight Center: Greenbelt, MD, USA, 1999; p. 65. [Google Scholar]
- Tilmes, S.; Lamarque, J.F.; Emmons, L.K.; Conley, A.; Schultz, M.G.; Saunois, M.; Thouret, V.; Thompson, A.M.; Oltmans, S.J.; Johnson, B.; et al. Technical Note: Ozonesonde climatology between 1995 and 2011: Description, evaluation and applications. Atmos. Chem. Phys. 2012, 12, 7475–7497. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A.; Pozo-Vázquez, D. Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmos. Chem. Phys. 2013, 13, 675–692. [Google Scholar] [CrossRef] [Green Version]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. Geosci. Remote Sens. IEEE Trans. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Rossow, W.B.; Walker, A.W.; Garder, L.C. Comparison of ISCCP and Other Cloud Amounts. J. Clim. 1993, 6, 2394–2418. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.; Kim, S.-W.; Park, R.J.; Park, J.-S.; Park, S.S. Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia. Air Qual. Atmos. Health 2018, 11, 49–60. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Yoon, M.-B.; Kim, H.-S. On Climate Variations and Changes Observed in South Korea. Clim. Chang. 2004, 66, 151–161. [Google Scholar] [CrossRef]
- Ho, C.-H.; Lee, E.-J.; Lee, I.; Jeong, S.-J. Earlier spring in Seoul, Korea. Int. J. Climatol. 2006, 26, 2117–2127. [Google Scholar] [CrossRef]
- Ha, K.-J.; Heo, K.-Y.; Lee, S.-S.; Yun, K.-S.; Jhun, J.-G. Variability in the East Asian Monsoon: A review. Meteorol. Appl. 2012, 19, 200–215. [Google Scholar] [CrossRef]
- KMA. Climate of Korea. Available online: https://web.kma.go.kr/eng/biz/climate_01.jsp (accessed on 1 March 2021).
- NREL. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 March 2021).
- Dobos, A.P. PVWatts Version 5 Manual Technical Report NREL/TP-6A20-62641, 2014. [CrossRef] [Green Version]
- Vilanova, A.; Kim, B.-Y.; Kim, C.K.; Kim, H.-G. Linear-Gompertz Model-Based Regression of Photovoltaic Power Generation by Satellite Imagery-Based Solar Irradiance. Energies 2020, 13, 781. [Google Scholar] [CrossRef] [Green Version]
Station Index | Station ID | Station Name | Latitude (°N) | Longitude (°E) | Information |
---|---|---|---|---|---|
1 | 100 | Daegwallyeong | 37.6771 | 128.7183 | Mountain |
2 | 101 | Chuncheon | 37.9026 | 127.7357 | Rural |
3 | 105 | Gangneung | 37.7515 | 128.8910 | Coast |
4 | 108 | Seoul | 37.5714 | 126.9658 | City |
5 | 112 | Incheon | 37.4777 | 126.6240 | City |
6 | 114 | Wonju | 37.3376 | 127.9466 | Rural |
7 | 119 | Suwon | 37.2723 | 126.9853 | City |
8 | 129 | Seosan | 36.7766 | 126.4939 | Coast |
9 | 131 | Cheongju | 36.6392 | 127.4407 | City |
10 | 133 | Daejeon | 36.372 | 127.3721 | City |
11 | 135 | Chupungnyeong | 36.2202 | 127.9946 | Mountain |
12 | 136 | Andong | 36.5729 | 128.7073 | Rural |
13 | 143 | Daegu | 35.8280 | 128.6522 | City |
14 | 146 | Jeonju | 35.8408 | 127.1190 | City |
15 | 156 | Gwangju | 35.1729 | 126.8916 | City |
16 | 159 | Busan | 35.1047 | 129.0320 | City |
17 | 165 | Mokpo | 34.8169 | 126.3812 | Coast |
18 | 184 | Jeju | 33.5141 | 126.5297 | Island |
Satellite | GMS—5 | GOES—9 | MTSAT—1R | MTSAT—2 | COMS |
---|---|---|---|---|---|
Data Availability | 1996.01~2003.06 | 2003.07~2005.06 | 2007.01~2009.12 | 2010.01~20111.12 | 2012.01~2019.12 |
Instrument | VISSR | Imager | JAMI | JAMI | MI |
Spectral Bands (μm) | 0.5–1.05 10.5–11.5 11.5–12.5 6.5–7.0 | 0.55–0.75 3.8–4.0 10.5–11.5 11.5–12.5 6.5–7.0 | 0.55–0.90 3.5–4.0 10.3–11.3 11.5–12.5 6.5–7.0 | 0.55–0.90 3.5–4.0 10.3–11.3 11.5–12.5 6.5–7.0 | 0.55–0.90 3.5–4.0 10.3–11.3 11.5–12.5 6.5–7.0 |
Spatial Resolution | 0.05° | 0.05o | 4 km | 4 km | 1 km |
Center Longitude | 140°E | 155°E | 140°E | 145°E | 128.2°E |
Station Index | Station ID | ASOS (kWh m−2 d−1) | UASIBS (kWh m−2 d−1) | R | rMBE (%) | rMAE (%) |
---|---|---|---|---|---|---|
1 | 100 | 3.710 | 3.471 | 0.930 | –5.85 | 12.82 |
2 | 101 | 3.664 | 3.633 | 0.975 | –0.64 | 7.09 |
3 | 105 | 3.693 | 3.509 | 0.959 | –4.48 | 10.50 |
4 | 108 | 3.403 | 3.719 | 0.967 | 9.74 | 11.38 |
5 | 112 | 3.691 | 3.807 | 0.957 | 4.18 | 10.55 |
6 | 114 | 3.715 | 3.652 | 0.977 | –1.46 | 6.79 |
7 | 119 | 3.537 | 3.730 | 0.952 | 7.03 | 12.29 |
8 | 129 | 3.672 | 3.720 | 0.968 | 1.93 | 9.06 |
9 | 131 | 3.704 | 3.737 | 0.969 | 1.12 | 7.28 |
10 | 133 | 3.989 | 3.755 | 0.971 | –5.48 | 9.89 |
11 | 135 | 3.695 | 3.729 | 0.940 | 2.10 | 11.53 |
12 | 136 | 3.813 | 3.801 | 0.965 | 0.86 | 11.73 |
13 | 143 | 3.858 | 3.821 | 0.971 | –0.35 | 7.72 |
14 | 146 | 3.703 | 3.764 | 0.968 | 2.47 | 9.98 |
15 | 156 | 3.834 | 3.749 | 0.953 | –1.70 | 8.85 |
16 | 159 | 3.871 | 3.924 | 0.958 | 1.92 | 8.51 |
17 | 165 | 3.840 | 3.791 | 0.978 | –1.00 | 6.88 |
18 | 184 | 3.645 | 3.637 | 0.976 | 0.02 | 9.23 |
Average | 3.724 | 3.719 | 0.963 | 0.58 | 9.56 |
Satellite | R | rMBE (%) | rMAE (%) |
---|---|---|---|
GMS–5 | 0.958 | 5.9 | 11.0 |
GOES–9 | 0.922 | 7.3 | 10.7 |
MTSAT–1R/2 | 0.976 | −3.8 | 7.1 |
COMS | 0.974 | −3.9 | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.K.; Kim, H.-G.; Kang, Y.-H.; Yun, C.-Y.; Kim, B.; Kim, J.Y. Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019. Remote Sens. 2021, 13, 3422. https://doi.org/10.3390/rs13173422
Kim CK, Kim H-G, Kang Y-H, Yun C-Y, Kim B, Kim JY. Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019. Remote Sensing. 2021; 13(17):3422. https://doi.org/10.3390/rs13173422
Chicago/Turabian StyleKim, Chang Ki, Hyun-Goo Kim, Yong-Heack Kang, Chang-Yeol Yun, Boyoung Kim, and Jin Young Kim. 2021. "Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019" Remote Sensing 13, no. 17: 3422. https://doi.org/10.3390/rs13173422
APA StyleKim, C. K., Kim, H. -G., Kang, Y. -H., Yun, C. -Y., Kim, B., & Kim, J. Y. (2021). Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019. Remote Sensing, 13(17), 3422. https://doi.org/10.3390/rs13173422