The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World
Abstract
:1. Introduction
2. Enhancing Food Production through RS Applications in Agriculture
2.1. Identifying and Estimating Crop Area
2.2. Monitoring Agricultural Crop Status
2.3. Modelling and Forecasting Future Crop Yields
3. Remote Sensing Challenges and Solutions to Increase Agricultural Productivity
3.1. Data Issues
3.1.1. Lack of Quality and Quantity, and Inconsistency, in Ground Data
3.1.2. Atmospheric and Reflectance Biases in Earth Observation Data in ASA Ecosystems
3.1.3. Small Agriculture Field Size and Insufficient Spatial Resolution
3.2. Remote Sensing Solutions and Future Applications
3.2.1. New RS Techniques and Data to Increase the Accuracy of Crop Area Estimation
3.2.2. New Freely Available RS Data to Improve Monitoring Agricultural Crop Status
3.2.3. Utilising the Improved RS Sensing Capabilities to Increase the Accuracy of Crop Yield Forecasting
4. The Role of Government, Investors, Policymakers and NGOs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaur, M.K.; Squires, V.R. Geographic Extent and Characteristics of the World’s Arid Zones and Their Peoples. In Climate Variability Impacts on Land Use and Livelihoods in Drylands; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Barakat, H.N. Arid lands: Challenges and hopes. In Earth System: History and Natural Variability-Vol. III; EOLSS publishers/UNESCO: Oxford, UK, 2009. [Google Scholar]
- International Fund for Agriculture Development (IFAD). The Rangelands of Arid and Semiarid Areas. 2000. Available online: https://www.ifad.org/en/ (accessed on 13 March 2021).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. In Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020. [Google Scholar]
- Wise, T.A. Can We Feed the World in 2050? A Scoping Paper to Assess the Evidence; GDAE Working Paper No. 13-04; Global Development and Environment Institute, Tufts University: Medford, MA, USA, 2013; Available online: https://ciaotest.cc.columbia.edu/wps/gdae/0029266/f_0029266_23757.pdf (accessed on 16 August 2021).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Guillou, M.; Matheron, G. The World Challenge to Feed 9 Billion People; Springer: New York, NY, USA, 2014; Available online: http://www.springer.com/us/book/9789401785686 (accessed on 16 May 2021).
- Röös, E.; Bajzelj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019 Safeguarding against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- OECD/FAO. Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef] [Green Version]
- International Monetary Fund (IMF). International Jobs Report; Economist Intelligence Unit: Washington, DC, USA, 2015. [Google Scholar]
- AGRA. Africa Agriculture Status Report: Climate Change and Smallholder Agriculture in Sub-Saharan Africa; Alliance for a Green Revolution in Africa (AGRA): Nairobi, Kenya, 2014; Available online: https://hdl.handle.net/10568/42343 (accessed on 10 February 2020).
- International Food Policy Research Institute (IFPRI). Unlocking the Potential for Agricultural Development in the Middle East and North Africa. 2018. Available online: https://www.ifpri.org/blog/unlocking-potential-agricultural-development-middle-east-and-north-africa (accessed on 14 April 2021).
- Blench, R.M. Aspects of Resource Conflict in Semi-Arid Africa; Overseas Development Institute: London, UK, 1996. [Google Scholar]
- Sarr, B. Present and future climate change in the semi-arid region of West Africa: A crucial input for practical adaptation in agriculture. Atmos. Sci. Lett. 2012, 13, 108–112. [Google Scholar] [CrossRef]
- Schwabe, K.A.; Connor, J.D. Drought Issues in Semi-arid and Arid Environments. Choices 2012, 27, 1–5. [Google Scholar]
- Jaafar, H.H.; Woertz, E. Agriculture as a funding source of ISIS: A GIS and remote sensing analysis. Food Policy 2016, 64, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, H.J.; Hendrix, C.S. Food Insecurity Violent Conflict: Causes, Consequences, and Addressing the Challenges (Occasional Paper n° 24); World Food Programme: Rome Italy, 2011; Available online: https://documents.wfp.org/stellent/groups/public/documents/newsroom/wfp238358.pdf?_ga=2.110043398.2008393740.1629366699-1914409899.1629366699 (accessed on 15 November 2020).
- Sharma, K.K.; Dumbala, S.R.; Bhatnagar-Mathur, P. Biotech Approaches for Crop Improvement in the Semi-arid Tropics. In Plant Biotechnology; Ricroch, A., Chopra, S., Fleischer, S., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeri, O.; Peled, A. Geographical model for precise agriculture monitoring with real-time remote sensing. ISPRS J. Photogramm. Remote Sens. 2009, 64, 47–54. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef] [Green Version]
- Naumann, G.; Spinoni, J.; Vogt, J.; Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 2015, 10, 124013. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Alagarswamy, G.; Andresen, J. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Chang. 2009, 19, 54–65. [Google Scholar] [CrossRef]
- Fuglie, K.O.; Nicholas, E.R. Resources, Policies, and Agricultural Productivity in Sub-Saharan Africa. 2013. Available online: https://www.ers.usda.gov/webdocs/publications/45045/35520_err145.pdf?v=0 (accessed on 16 August 2021).
- Shafi, U.; Mumtaz, R.; Garcia-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Qader, S.H.; Dash, J.; Atkinson, P.M. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Sci. Total Environ. 2018, 613–614, 250–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, M.L. Food Security: An Ecological-Social Analysis to Promote Social Development. J. Community Pract. 2011, 19, 62–79. [Google Scholar] [CrossRef]
- Enenkel, M.; See, L.; Karner, M.; Álvarez, M.; Rogenhofer, E.; Baraldès-Vallverdú, C.; Lanusse, C.; Salse, N. Food Security Monitoring via Mobile Data Collection and Remote Sensing: Results from the Central African Republic. PLoS ONE 2015, 10, e0142030. [Google Scholar] [CrossRef] [Green Version]
- Young, H.; Jaspars, S.; Brown, R.; Frize, J.; Khogali, H. Food-Security Assessments in Emergencies: A Livelihoods Approach; Overseas Development Institute; Humanitarian Practice Network (HPN): London, UK, 2001. [Google Scholar]
- Robinson, A.; Obrecht, A. Using Mobile Voice Technology to Improve the Collection of Food Security Data: WFP’s Mobile Vulnerability Analysis and Mapping’ HIF/ALNAP Case Study; ODI/ALNAP: London, UK, 2016. [Google Scholar]
- Henrys, P.A.; Jarvis, S. Integration of ground survey and remote sensing derived data: Producing robust indicators of habitat extent and condition. Ecol. Evol. 2019, 9, 8104–8112. [Google Scholar] [CrossRef] [Green Version]
- Jayne, T.S.; Rashid, S. The value of accurate crop production forecasts. In Agricultural Risks Management in Africa: Taking Stock of What Has and Hasn’t Worked; Presented at the Fourth African Agricultural Markets Program (AAMP) Policy Symposium: Lilongwe, Malawi, 2010. [Google Scholar]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Stone, R.C.; Meinke, H. Operational seasonal forecasting of crop performance. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2109–2124. [Google Scholar] [CrossRef] [Green Version]
- Food & Agriculture Organization of the United Nations (FAO). Global Map of Aridity. Spatial Resolution of 10 Arc Minutes and Temporal Resolution of 1961–1990; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2009; Available online: https://data.apps.fao.org/map/catalog/static/api/records/221072ae-2090-48a1-be6f-5a88f061431a (accessed on 19 August 2020).
- Qader, S.H.; Dash, J.; Atkinson, P.; Rodriguez-Galiano, V.F. Classification of Vegetation Type in Iraq Using Satellite-Based Phenological Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 414–424. [Google Scholar] [CrossRef]
- Brown, M.E. Satellite Remote Sensing in Agriculture and Food Security Assessment. Procedia Environ. Sci. 2015, 29, 307. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Waldner, F.; De Abelleyra, D.; Veron, S.R.; Zhang, M.; Wu, B.F.; Plotnikov, D.; Defourny, P. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 2016, 37, 3196–3231. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Hansen, M.C.; Potapov, P.V.; Low, F.; Newby, T.; Ferreira, S.; Defourny, P. National-scale cropland mapping based on spectral-temporal features and outdated land cover information. PLoS ONE 2017, 12, e0181911. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.Y.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Rasmussen, L.Y.; Rasmussen, K.; Fensholt, R. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sens. Environ. 2020, 239. [Google Scholar] [CrossRef]
- Witmer, F.D.W. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 2008, 29, 3805–3831. [Google Scholar] [CrossRef]
- Baumann, M.; Radeloff, V.C.; Avedian, V.; Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Chang. 2015, 15, 1703–1716. [Google Scholar] [CrossRef]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Huang, Y.B.; Yuan, L.; Yang, G.J.; Chen, L.P.; Zhao, C.J. Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. Pest Manag. Sci. 2016, 72, 335–348. [Google Scholar] [CrossRef]
- Knauer, U.; Matros, A.; Petrovic, T.; Zanker, T.; Scott, E.S.; Seiffert, U. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Plant Methods 2017, 13. [Google Scholar] [CrossRef]
- Ma, H.Q.; Huang, W.J.; Jing, Y.S.; Yang, C.H.; Han, L.X.; Dong, Y.Y.; Ruan, C. Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid of Winter Wheat Using Bi-Temporal Landsat-8 Imagery. Remote Sens. 2019, 11, 846. [Google Scholar] [CrossRef] [Green Version]
- Bolten, J.D.; Crow, W.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Di, L.; Yu, G.; Shao, Y.; Shrestha, R.; Kang, L. A Web service based application serving vegetation condition indices for Flood Crop Loss Assessment. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 215–220. [Google Scholar]
- Meroni, M.; Schucknecht, A.; Fasbender, D.; Rembold, F.; Fava, F.; Mauclaire, M.; Goffner, D.; Di Lucchio, L.M.; Leonardi, U. Remote sensing monitoring of land restoration interventions in semi-arid environments with a before–after control-impact statistical design. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djurfeldt, G.; Hall, O.; Jirstrom, M.; Bustos, M.A.; Holmquist, B.; Nasrin, S. Using panel survey and remote sensing data to explain yield gaps for maize in sub-Saharan Africa. J. Land Use Sci. 2018, 13, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, H.H.; Ahmad, F.A. Crop yield prediction from remotely sensed vegetation indices and primary productiv-ity in arid and semi-arid lands. Int. J. Remote Sens. 2015, 36, 4570–4589. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Moumni, A.; Lahrouni, A. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area. Scientifica 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Dash, J.; Atkinson, P. The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes. Front. Environ. Sci. 2015, 3, 2547. [Google Scholar] [CrossRef] [Green Version]
- Suepa, T.; Qi, J.; Lawawirojwong, S.; Messina, J. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia. Environ. Res. 2016, 147, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adole, T.; Dash, J.; Atkinson, P.M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 2018, 90, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications. Glob. Chang. Biol. 2008, 14, 1057–1075. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Singh, N.; Glenn, N.F. Multitemporal spectral analysis for cheatgrass (Bromus tectorum) classification. Int. J. Remote Sens. 2009, 30, 3441–3462. [Google Scholar] [CrossRef]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C. Monitoring forest succession with multitemporal landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557–2567. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Heupel, K.; Spengler, D.; Itzerott, S. A Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Carfagna, E.; Gallego, F.J. Using Remote Sensing for Agricultural Statistics. International Statistical Review/Revue Internationale De Statistique. 2005, pp. 389–404. Available online: www.jstor.org/stable/25472682 (accessed on 16 August 2021).
- Moumni, A.; Oujaoura, M.; Ezzahar, J.; Lahrouni, A. A new synergistic approach for crop discrimination in a semi-arid region using Sentinel-2 time series and the multiple combination of machine learning classifiers. J. Physics Conf. Ser. 2021, 1743, 012026. [Google Scholar] [CrossRef]
- Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sens. 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Ennouri, K.; Kallel, A. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Math. Probl. Eng. 2019, 2019, 9404565. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Steensland, A. 2020 Global Agricultural Productivity Report: Productivity in a time of pandemics. 2020. Available online: https://vtechworks.lib.vt.edu/handle/10919/102008 (accessed on 16 August 2021).
- Del Rio, A.; Simpson, B.M. Agricultural Adaptation to Climate Change in the Sahel: Expected Impacts on Pests and Diseases Afflicting Selected Crops; USAID: Washington, DC, USA, 2014. [Google Scholar]
- Hemmati, C.; Nikooei, M.; Al-Subhi, A.; Al-Sadi, A. History and Current Status of Phytoplasma Diseases in the Middle East. Biology 2021, 10, 226. [Google Scholar] [CrossRef]
- Meyer, M.; Cox, J.A.; Hitchings, M.D.T.; Burgin, L.; Hort, M.C.; Hodson, D.P.; Gilligan, C.A. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants 2017, 3, 780–786. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture Foreign Agricultural Service (USDA FAS). MIDDLE EAST: Yellow Rust Epidemic Affects Regional Wheat Crops. 2010. Available online: https://ipad.fas.usda.gov/highlights/2010/06/Middle%20East/ (accessed on 13 May 2021).
- Simons, S. Management strategies for maize grey leaf spot (Cercospora zeaemaydis) in Kenya and Zimbabwe. DFID Tech. Rep. 2006, R7566, 1–67. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Hruska, A. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kasoma, C.; Shimelis, H.; Laing, M.D. Fall armyworm invasion in Africa: Implications for maize production and breeding. J. Crop Improv. 2021, 35, 111–146. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84. [Google Scholar] [CrossRef]
- Singh, N.P.; Bantilan, C.; Byjesh, K. Vulnerability and policy relevance to drought in the semi-arid tropics of Asia—A retrospective analysis. Weather. Clim. Extremes 2014, 3, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Kamali, B.; Abbaspour, K.C.; Lehmann, A.; Wehrli, B.; Yang, H. Spatial assessment of maize physical drought vulnerability in sub-Saharan Africa: Linking drought exposure with crop failure. Environ. Res. Lett. 2018, 13, 074010. [Google Scholar] [CrossRef]
- Erian, W.; Katlan, B.; Assad, N.; Ibrahim, S. Effects of Drought and Land Degradation on Vegetation Losses in Africa, Arab Region with Special Case Study on: Drought and Conflict in Syria, South America and Forests of Amazon and Congo Rivers Basins; Background Paper Prepared for the 2015 Global Assessment Report on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2014. [Google Scholar]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A Review of Drought in the Middle East and Southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Kandeel, A.A. In the Face of Climate Change: Challenges of Water Scarcity and Security in MENA. 11 June 2019. Atlantic Council. Available online: https://www.atlanticcouncil.org/blogs/menasource/in-theface-of-climate-change-challenges-of-water-scarcity-and-security-in-mena/ (accessed on 17 March 2021).
- United States Department of Agriculture Foreign Agricultural Service (USDA FAS). Drought Reduces 2008/09Winter Grain Yield, USDA-FAS, Office of Global Analysis. 2008. Available online: http://www.pecad.fas.usda.gov/highlights/2008/05/iraq_may2008.htm (accessed on 16 November 2020).
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.-H.; Wu, B.-F. Study on the crop condition monitoring methods with remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 945–950. [Google Scholar]
- Cogato, A.; Meggio, F.; Migliorati, M.D.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Sazib, N.; Mladenova, L.E.; Bolten, J.D. Assessing the Impact of ENSO on Agriculture Over Africa Using Earth Observation Data. Front. Sustain. Food Syst. 2020, 4, 188. [Google Scholar] [CrossRef]
- Mechiche-Alami, A.; Abdi, A.M. Agricultural productivity in relation to climate and cropland management in West Africa. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, H.; Zhang, Y.; Xing, C.; Bao, Z. Feasibility assessment of multi-spectral satellite sensors in monitoring and discriminating wheat diseases and insects. Optik 2017, 131, 598–608. [Google Scholar] [CrossRef]
- Raikes, C.; Burpee, L.L. Use of multispectral radiometry for assessment of rhizoctonia blight in creeping bentgrass. Phytopathology 1998, 88, 446–449. [Google Scholar] [CrossRef]
- Chen, X.; Ma, J.; Qiao, H.; Cheng, D.; Xu, Y.; Zhao, Y. Detecting infestation of take-all disease in wheat using Land-sat Thematic Mapper imagery. Int. J. Remote Sens. 2007, 28, 5183–5189. [Google Scholar] [CrossRef]
- Piou, C.; Gay, P.E.; Benahi, A.S.; Ebbe, M.; Chihrane, J.; Ghaout, S.; Escorihuela, M.J. Soil moisture from remote sensing to forecast desert locust presence. J. Appl. Ecol. 2019, 56, 966–975. [Google Scholar] [CrossRef]
- Krishna, T.M.; Ravikumar, G.; Krishnaveni, M. Remote Sensing Based Agricultural Drought Assessment in Palar Basin of Tamil Nadu State, India. J. Indian Soc. Remote Sens. 2009, 37, 9–20. [Google Scholar] [CrossRef]
- Rembold, F.; Meroni, M.; Urbano, F.; Lemoine, G.; Kerdiles, H.; Perez-Hoyos, A. ASAP-Anomaly hot Spots of Agricultural Production, a new early warning decision support system developed by the Joint Research Centre. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, Belgium, 27–29 June 2017. [Google Scholar]
- Kahan, D. Managing Risk in Farming; Food and agriculture organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Pease, J.W.; Wade, E.W.; Skees, J.S.; Shrestha, C.M. Comparisons between Subjective and Statistical Forecasts of Crop Yields. Rev. Agric. Econ. 1993, 15, 339–350. [Google Scholar] [CrossRef]
- Qian, B.; De Jong, R.; Warren, R.; Chipanshi, A.; Hill, H. Statistical spring wheat yield forecasting for the Canadian prairie provinces. Agric. For. Meteorol. 2009, 149, 1022–1031. [Google Scholar] [CrossRef]
- Raja, R.; Nayak, A.; Panda, B.; Lal, B.; Tripathi, R.; Shahid, M.; Kumar, A.; Mohanty, S.; Samal, P.; Gautam, P.; et al. Monitoring of meteorological drought and its impact on rice (Oryza sativa L.) productivity in Odisha using standardized precipitation index. Arch. Agron. Soil Sci. 2014, 60, 1701–1715. [Google Scholar] [CrossRef]
- Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy; Sparks, D.L., Ed.; 2019; Volume 154, pp. 201–255. Available online: https://www.academia.edu/41108597/Seasonal_crop_yield_forecast_Methods_applications_and_accuracies (accessed on 16 August 2021).
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Ban, H.-Y.; Kim, K.S.; Park, N.-W.; Lee, B.-W. Using MODIS Data to Predict Regional Corn Yields. Remote Sens. 2017, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Liu, L.; Ritchie, J.T. A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances. Adv. Agron. 2016, 136, 27–132. [Google Scholar]
- Basso, B.; Cammarano, D.; Carfagna, E. Review of Crop Yield Forecasting Methods and Early Warning Systems. In Proceedings of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics; FAO Headquarters: Rome, Italy, 2013; pp. 1–56. Available online: http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf (accessed on 11 June 2021).
- Hielkema, J.; Snijders, F. Operational use of environmental satellite remote sensing and satellite communications technology for global food security and locust control by FAO: The ARTEMIS and DIANA systems. Acta Astronaut. 1994, 32, 603–616. [Google Scholar] [CrossRef]
- Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G. Estimation of the dy-namics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. Int. J. Remote Sens. 2014, 35, 1004–1028. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Singh, A.; Fahad, M.; Waqas, M.M. Remote sensing-based framework to predict and assess the interannual variability of maize yields in Pakistan using Landsat imagery. Comput. Electron. Agric. 2020, 178, 105732. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Zhou, W.; Jiang, C.; Frankenberg, C.; Sun, Y.; He, L.; Köhler, P. Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102126. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy 2020, 10, 1046. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2021, 101, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, A.; Dubrovin, K.; Sorokin, A.; Aseeva, T. Predicting Soybean Yield at the Regional Scale Using Remote Sensing and Climatic Data. Remote Sens. 2020, 12, 1936. [Google Scholar] [CrossRef]
- Leroux, L.; Falconnier, G.; Diouf, A.; Ndao, B.; Gbodjo, Y.J.E.; Tall, L.; Balde, A.; Clermont-Dauphin, C.; Bégué, A.; Affholder, F.; et al. Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal. Agric. Syst. 2020, 184, 102918. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Rahman, M.M.; Robson, A. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level. Remote Sens. 2020, 12, 1313. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, W.S.; Gan, H.; Peres, N.; Fraisse, C.; Zhang, Y.; He, Y. Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sens. 2019, 11, 1584. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Özdoğan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, T.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Xu, J.; Meng, J.; Quackenbush, L.J. Use of remote sensing to predict the optimal harvest date of corn. Field Crops Res. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Donohue, R.J.; Lawes, R.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Res. 2018, 227, 79–90. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Pan, M.; Li, Y. Benefits of Seasonal Climate Prediction and Satellite Data for Forecasting U.S. Maize Yield. Geophys. Res. Lett. 2018, 45, 9662–9671. [Google Scholar] [CrossRef]
- Kanning, M.; Kühling, I.; Trautz, D.; Jarmer, T. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, 2000. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Z.; Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. Eur. J. Agron. 2018, 101, 163–173. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, A.; Washington-Allen, R.A.; Leib, B.G. Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Comput. Electron. Agric. 2018, 152, 186–197. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, L.; Zhou, X.; Zhu, Y.; Cao, W.; Qiu, X.; Cheng, T.; Tian, Y. Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precis. Agric. 2018, 19, 55–78. [Google Scholar] [CrossRef]
- Rahman, M.M.; Robson, A.; Bristow, M. Exploring the potential of high resolution worldview-3 Imagery for estimating yield of mango. Remote Sens. 2018, 10, 1866. [Google Scholar] [CrossRef] [Green Version]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260–261, 300–320. [Google Scholar] [CrossRef]
- Sanches, G.M.; Duft, D.G.; Kölln, O.; Luciano, A.C.D.S.; De Castro, S.G.Q.; Okuno, F.M.; Franco, H.C.J. The potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fields. Int. J. Remote Sens. 2018, 39, 5402–5414. [Google Scholar] [CrossRef]
- Lai, Y.; Pringle, M.; Kopittke, P.; Menzies, N.; Orton, T.; Dang, Y. An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 99–108. [Google Scholar] [CrossRef]
- Kawamura, K.; Ikeura, H.; Phongchanmaixay, S.; Khanthavong, P. Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and PLS Regression can Assess Grain Yield. Remote Sens. 2018, 10, 1249. [Google Scholar] [CrossRef] [Green Version]
- Newton, I.H.; Islam, A.F.M.T.; Islam, A.K.M.S.; Islam, G.M.T.; Tahsin, A.; Razzaque, S. Yield Prediction Model for Potato Using Landsat Time Series Images Driven Vegetation Indices. Remote Sens. Earth Syst. Sci. 2018, 1, 29–38. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Li, Z.; Yang, G.; Yang, H.; Feng, H.; Xu, X.; Wang, J.; Li, X.; Luo, J. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS J. Photogramm. Remote Sens. 2017, 126, 24–37. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Ebecken, N.F.F.; Esquerdo, J. Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.-Z.; Bai, Y.-Q. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Srivastava, A.K.; Balwinder-Singh; Joon, R.K.; McDonald, A.; Royal, K.; Lisaius, M.C.; Lobell, D.B. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data. Remote Sens. 2016, 8, 860. [Google Scholar] [CrossRef] [Green Version]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Al-Gaadi, K.A.; Hassaballa, A.; Tola, E.; Kayad, A.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of Potato Crop Yield Using Precision Agriculture Techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar] [CrossRef]
- Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Araus, J.L. A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [Green Version]
- Satir, O.; Berberoglu, S. Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Res. 2016, 192, 134–143. [Google Scholar] [CrossRef]
- Yao, F.; Tang, Y.; Wang, P.; Zhang, J. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- Siyal, A.A.; Dempewolf, J.; Becker-Reshef, I. Rice yield estimation using Landsat ETM + Data. J. Appl. Remote Sens. 2015, 9, 095986. [Google Scholar] [CrossRef]
- Heremans, S.; Dong, Q.; Zhang, B.; Bydekerke, L.; Van Orshoven, J. Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data. J. Appl. Remote Sens. 2015, 9, 097095. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147, 219–231. [Google Scholar] [CrossRef]
- Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H.M.; Barsi, Á.; Szabó, G.; Kugler, Z.s. Data Quality in Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W7, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.A.; Yitayew, M.; Slack, D.C.; Hutchinson, C.F.; Huete, A.; Petersen, M.S. Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. Int. J. Remote Sens. 2000, 21, 3487–3508. [Google Scholar] [CrossRef]
- Carletto, C.; Jolliffe, D.; Banerjee, R. The Emperor Has No Data! Agricultural Statistics in Sub-Saharan Africa; World Bank Working Paper; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Paliwal, A.; Jain, M. The Accuracy of Self-Reported Crop Yield Estimates and Their Ability to Train Remote Sensing Algorithms. Front. Sustain. Food Syst. 2020, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Persello, C. A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2142–2154. [Google Scholar] [CrossRef] [Green Version]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. GeoInf. 2016, 5, 199. [Google Scholar] [CrossRef] [Green Version]
- Scott, W.A.; Hallam, C.J. Assessing species misidentification rates through quality assurance of vegetation monitoring. Plant Ecol. 2003, 165, 101–115. [Google Scholar] [CrossRef]
- Costa, H.; Foody, G.M.; Jiménez, S.; Silva, L. Impacts of Species Misidentification on Species Distribution Modeling with Presence-Only Data. ISPRS Int. J. GeoInf. 2015, 4, 2496–2518. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Li, Z.-L. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances. Remote Sens. Environ. 2017, 194, 127–145. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 173–201. [Google Scholar]
- Chaabouni, S.; Kallel, A.; Houborg, R. Improving retrieval of crop biophysical properties in dryland areas using a multi-scale variational RTM inversion approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102220. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Bernstein, L.S.; Acharya, P.K.; Dothe, H.; Matthew, M.W.; Adler-Golden, S.M.; Chetwynd, J.J.H.; Richtsmeier, S.C.; Pukall, B.; et al. MODTRAN4 radiative transfer modeling for atmospheric correction. SPIE’s Int. Symp. Opt. Sci. Eng. Instrum. 1999, 3756, 348. [Google Scholar] [CrossRef]
- Vermote, E.F.; Saleous, N. Operational Atmospheric Correction of MODIS Visible to Middle Infrared Land Surface Data in the Case of an Infinite Lambertian Target. In Earth Science Satellite Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 123–153. [Google Scholar]
- Dinter, T.; Von Hoyningen-Huene, W.; Burrows, J.P.; Kokhanovsky, A.; Bierwirth, E.; Wendisch, M.; Mueller, D.; Kahn, R.; Diouri, M. Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM campaign. Tellus B Chem. Phys. Meteorol. 2009, 61, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Space Phys. 2010, 115, 1–28. [Google Scholar] [CrossRef]
- Sayer, A.; Munchak, L.A.; Hsu, N.C.; Levy, R.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.; Meister, G. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos. 2015, 120, 12157–12174. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Okin, G.S.; Roberts, D.A. Remote sensing in arid regions: Challenges and opportunities. In Manual of Remote Sensing; Ustin, S., Ed.; John Wiley & Sons: New York, NY, USA, 2004; pp. 111–146. [Google Scholar]
- Gamo, M.; Shinoda, M.; Maeda, T. Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. Int. J. Remote Sens. 2013, 34, 6701–6722. [Google Scholar] [CrossRef] [Green Version]
- Escadafal, R.; Huete, A. Improvement in Remote-Sensing of Low Vegetation Cover in Arid Regions by Correcting Vegetation Indexes for Soil Noise. C. R. L’Acad. Sci. Ser. 2 Mec. Phys. Chim. Sci. L’Univ. Sci. Terre 1991, 312, 1385–1391. [Google Scholar]
- Huete, A.; Tucker, C.J. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens. 1991, 12, 1223–1242. [Google Scholar] [CrossRef]
- Guerschman, J.; Scarth, P.; McVicar, T.; Renzullo, L.J.; Malthus, T.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [Google Scholar] [CrossRef]
- Dawelbait, M.; Morari, F. Limits and Potentialities of Studying Dryland Vegetation Using the Optical Remote Sensing. Ital. J. Agron. 2008, 3, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Tongway, D.J.; Ludwig, J.A. Heterogeneity in arid and semiarid lands (Chapter 10). In Ecosystem Function in Heterogeneous Landscapes; Lovett, G.M., Turner, M.G., Jones, C.G., Weathers, K.C., Eds.; Springer: New York, NY, USA, 2005; pp. 189–205. [Google Scholar]
- Tan, B.; Woodcock, C.; Hu, J.; Zhang, P.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 2006, 105, 98–114. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Zurita-Milla, R.; Alonso, L.; Amoros-Lopez, J.; Guanter, L.; Camps-Valls, G. Gridding Artifacts on Medium-Resolution Satellite Image Time Series: MERIS Case Study. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2601–2611. [Google Scholar] [CrossRef]
- Delrue, J.; Bydekerke, L.; Eerens, H.; Gilliams, S.; Piccard, I.; Swinnen, E. Crop mapping in countries with small-scale farming: A case study for West Shewa, Ethiopia. Int. J. Remote Sens. 2012, 34, 2566–2582. [Google Scholar] [CrossRef]
- Hannerz, F.; Lotsch, A. Assessment of Land Use and Cropland Inventories for Africa; CEEPA Discussion Papers 22; Centre of Environmental Economics and Policy in Africa, University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Griffin, S.; Kunz, E. Data fusion and integration of high and medium resolution imagery for crop analysis. In Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, USA, 9–13 March 2009. [Google Scholar]
- Fahimnejad, H.; Soofbaf, S.R.; Alimohammadi, A.; Zoej, M.V. Crop type classification by Hyperion Data and Unmixing Algorithm. 2007. Available online: https://www.geospatialworld.net/wp-content/uploads/images/pdf/MWF_Poster_40.pdf (accessed on 12 May 2021).
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Wang, J.; Zhu, X.; Hilker, T. An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sens. 2013, 5, 6346–6360. [Google Scholar] [CrossRef] [Green Version]
- Zurita-Milla, R.; Kaiser, G.; Clevers, J.G.P.W.; Schneider, W.; Schaepman, M.E. Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113, 1874–1885. [Google Scholar] [CrossRef]
- Amorós-López, J.; Gómez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [Google Scholar] [CrossRef]
- Luo, Y.; Guan, K.; Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 2018, 214, 87–99. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhang, J.C.; Shi, Y.Y.; Nie, C.W.; Wei, L.G.; Wang, J.H. Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Remote Sens. 2014, 6, 3611–3623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Zhou, X.G.; Zhang, J.; Lan, Y.B.; Xu, C.; Liang, D. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.M.; Sun, Q.; Hu, B.; Zhang, S. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Sensors 2020, 20, 1487. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.J.; Cui, X.M.; Shi, Y.; Liu, L.Y. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [Green Version]
- Isip, M.F.; Alberto, R.T.; Biagtan, A.R. Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery. Spat. Inf. Res. 2020, 28, 369–375. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; Mccarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Shammi, S.A.; Meng, Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; Cescatti, A.; Migliavacca, M.; Kustas, W.P. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP. Agric. For. Meteorol. 2013, 177, 10–23. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L. The potential of the MERIS Terrestrial Chlorophyll Index for crop yield prediction. Remote Sens. Lett. 2014, 5, 733–742. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Amoros-Lopez, J.; Vila, J.; Moreno, J. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Corp, L.A.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 2011, 8, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Fisher, J.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.-E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Parazoo, N.C.; Bowman, K.; Fisher, J.; Frankenberg, C.; Jones, D.B.A.; Cescatti, A.; Perez-Priego, O.; Wohlfahrt, G.; Montagnani, L. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang. Biol. 2014, 20, 3103–3121. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob. Chang. Biol. 2016, 22, 716–726. [Google Scholar] [CrossRef]
- Harris, R. Earth observation and UK science policy. Space Policy 2002, 18, 205–213. [Google Scholar] [CrossRef]
- Tonneau, J.-P.; Bégué, A.; Leroux, L.; Augusseau, X.; Faure, J.-F.; Mertens, B.; Pinet, C.; Tomasini, L. Geospatial information for African agriculture: A key investment for agricultural policies. Perspective 2019, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Begue, A.; Leroux, L.; Soumare, M.; Faure, J.F.; Diouf, A.A.; Augusseau, X.; Tonneau, J.P. Remote Sensing Products and Services in Support of Agricultural Public Policies in Africa: Overview and Challenges. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1–57. [Google Scholar] [CrossRef] [PubMed]
- UNECA. Geospatial Information for Sustainable Development in Africa—African Action Plan on Global Geospatial Information Management 2016–2030; United Nations Economic Commission for Africa (UNECA): Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Saah, D.; Tenneson, K.; Matin, M.; Uddin, K.; Cutter, P.; Poortinga, A.; Nguyen, Q.H.; Patterson, M.; Johnson, G.; Markert, K.; et al. Land Cover Mapping in Data Scarce Environments: Challenges and Opportunities. Front. Environ. Sci. 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
RS Applications | Activities |
---|---|
Identifying and estimating crop area | |
Monitoring agriculture crop status | |
Modelling and forecasting future crop yield |
Location and Extent | Crop Type | RS Data/Resolution | Method | Model Performance | Reference | |
---|---|---|---|---|---|---|
1 | Pakistan, Faisalabad district | Maize | Landsat 8/30 m | Least absolute shrinkage and selection (LASSO) regression model | R2 = 0.95 | [115] |
2 | U.S., Midwest | Maize and soybean | MODIS/250 m | Random forest and other models (e.g., LASSO, ridge regression (RIDGE)) | R2 = 0.78 | [116] |
3 | Brazil, Rio Grande do Sul (RS) state | Soybean | MODIS/250 m | Multivariate OLS linear regression, random forest and LSTM neural networks | RMSE = 0.4 Mg ha−1 | [117] |
4 | Canada, Prince Edward Island and Brunswick provinces | Potato | NDVI was measured using the FieldScout CM NDVI Meter/0.5 m | Support vector regression (SVR), linear regression (LR), elastic net (EN), k-nearest neighbour (k-NN) | RMSE = 4.62 t/ha | [118] |
5 | China, North China Plain | Wheat | MODIS/250 m | Support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF) | R2 = 0.75 | [119] |
6 | Iran, Boshruyeh city | Barley | Sentinel-2/10 m | Gaussian process regression algorithm, decision tree, K-nearest neighbour regression | R2 = 0.84 | [120] |
7 | Middle Amur Region, Khabarovsk Municipal District | Soybean | MODIS/250 m | Linear regression model | RMSE = 0.13 t/ha | [121] |
8 | Senegal, parkland of Central Senegal | Millet | Sentinel-2/10 m | Linear regression model | RRMSE = 28% | [122] |
9 | Wisconsin, Arlington Agricultural Research Station | Alfalfa | UAV-Based Hyperspectral Imagery/few cm | Ensemble modelling | R2 = 0.874 | [123] |
10 | South-East of Queensland in Australia, Bundaberg | Sugarcane | Integrating Landsat-8 and Sentinel-2 | Linear regression model | R2 = 0.87 (RMSE = 11.33 t·ha−1) | [124] |
11 | South Wales, Moree Plains Shire | Wheat | Sentinel-2/10 m | Multivariate linear regression | R2 = 0.93 (RMSE = 0.64 t/ha) | [125] |
12 | China, County Level (e.g., Hebei, Henan, Shandong) | Winter wheat | AVHRR/0.05 arc degrees | Long short-term memory (LSTM) neural networks | R2 = 0.77 (RMSE = 721 kg/ha) | [126] |
13 | Uruguay, Soriano site (field scale) | Winter wheat | Landsat-7, Landsat-8/30 m | Simple regression method | RMSE = 966 kg ha−1 | [127] |
14 | Florida, the University of Florida in Citra site | Strawberry | UAV | Region-based convolutional neural network (R-CNN | 84.10% | [128] |
15 | US, Midwestern | Maize | Landsat 5, 7, and 8/30 m | Simple Algorithm For Yield estimates (SAFY) | R2 = 0.62 | [129] |
16 | China, Central China Agricultural University | Oilseed rape | UAV | Partial least squares regression, support vector machine regression, artificial neutral network | R2 = 0.7 | [130] |
17 | Heilongjiang province in northeast China, Hongxing Farm | Corn | HJ-1 satellites/30 m | Nonlinear regression | R2 = 0.92 | [131] |
18 | Australia, districts and countries | Canola and wheat | MODIS/250 m | C-Crop model | R2 = 0.81 | [132] |
19 | The U.S., national and county levels | Maize | MODIS/250 m | Linear trend model | RMSE = 4.37 bushels per acre | [133] |
20 | Germany, Osnabrück University of Applied Sciences in Belm | Wheat | UAV-Based Hyperspectral Imagery | Partial least-squares regression, multiple linear regression | R2 = 0.79 | [134] |
21 | North China Plain | Wheat | MODIS/250 m | MCWLA-wheat model | R2 = 0.42 | [135] |
22 | madison county, Molly Caren Farm | Corn | Aerial imagery and LiDAR data | Random forest (RF); neural network (NN); support vector machine (SVM) | R2 = 0.53 | [136] |
23 | U.S., central Iowa | Corn | MODIS/250 m; Landsat-Sentinel2-MODIS | Linear regression approach | R2 = 0.62 | [137] |
24 | U.S., west Tennessee | Cotton lint | Landsat 8 | Artificial neural network | R2 = 0.86 | [138] |
25 | China, Qutang Town, Haian city | Wheat | HJ-CCD/30 m | Wheat Grow model | RMSE = 0.92, 1.12 g m−2 | [139] |
26 | Australia, Acacia Hills, Northern Territory | Mango | World View-3/0.31 m | Artificial neural network | R2 = 0.60 | [140] |
27 | Hungary, country | Wheat, rapeseed, maize and sunflower | MODIS/500 m | Multiple linear regression models | R2 = 0.817, 0.827, 0.88, 0.76 | [141] |
28 | Brazil, Itirapina—SãoPaulo | Sugarcane | UAV | Multiple linear regression | R2 = 0.69 | [142] |
29 | Australia, northern grain-growing region | Wheat | Landsat 5 and 8/30 m | Linear mixed-effects model | RMSE = 0.79 Mg/ha | [143] |
30 | Laos, Rice Research Center | Rice | MS-720 spectroradiometer | partial least-squares regression | R2 = 0.873 | [144] |
31 | Bangladesh, Munshiganj District | Potato | Landsat 7 and 8/30 m | Regression analysis | R2 = 0.81 | [145] |
32 | China, Rugao city, Jiangsu province | Rice | UAVs | Multiple linear regression function | R2 = 0.75 | [146] |
33 | USA, inot Noir vineyards in California | Grape | Landsat 7 and 8/30 m | Linear function | R2 = 0.8 | [147] |
34 | USA(Illinois) and China (Heilongjiang Province) | Corn | MODIS/250 m | Simple linear regression models | R2 = 0.87, R2 = 0.68 | [110] |
35 | China, Yangling District | Wheat | (HJ-1A/B/30 m, RADARSAT-2/8 m | Regression models | R2 = 0.68, RMSE = 1.77 ton/ha | [148] |
36 | Brazil, São Paulo State | Sugarcane | MODIS/250 m | Neural network wrapper | R2 = 0.61 | [149] |
37 | U.S., Missouri Mississippi | Corn | MODIS/250 m | Regression analysis | R2 value of 0.85 | [150] |
38 | Franc, near Toulouse, regional scale | Maize | Formosat-2, SPOT4-Take5, Landsat-8 and Deimos-1. SPOT4-Take5 | Simple Algorithm For Yield estimates (SAFY) | R2 = 0.96; RRMSE = 4.6% | [109] |
39 | India, Arrah district | Wheat | SkySat imagery/2 m | Linear regression model | R2 = 0.62 | [151] |
40 | Spain, IRTA Research Station in Gimenells | Maize | UAV/0.15 m | Linear-plateau models | R2 = 0.74 | [152] |
41 | Saudi Arabia, Wadi Al-Dawasir area south of Riyadh | Potato | Landsat 8/30 m, Sentinel2/10 m | Linear regression analysis | R2 = 0.65, R2 = 0.65 | [153] |
42 | Southern Africa, Harare centre | Maize | UAV/10 cm | Multiple variances analyses | R2 = 0.69 | [154] |
43 | Turkey, Seyhan Plane | Wheat, corn, cotton | Landsat/30 m | Stepwise linear regression | R2 = 0.67, R2 = 0.5, R2 = 0.7 | [155] |
44 | Syrian and Lebanese territories | Crop | MODIS/500 m | Regression analysis | R2 = 0.85 | [57] |
45 | China, Northeast China Plain | Maize | MODIS/500 m | RS–P–YEC model | R2 = 0.827 | [156] |
46 | U.S.A. | Corn | MODIS/500 m | Convolutional architecture for fast feature embedding, support vector machine | R2 = 0.742, R2 = 0.820 | [157] |
47 | Pakistan, Sindh province | Rice | Landsat ETM+ | Regression models | R2 = 0.875 | [158] |
48 | China, Huaibei Plain | Winter wheat | SPOT-VEGETATION | Regression tree | R2 = 0.93 | [159] |
49 | China, Baizhuang town of Anyang county | Winter wheat | SPOT-5 image/10 m | Linear function | R2 = 0.64 | [75] |
50 | U.S.A. | Corn | MODIS/Terra (or Aqua)/250 m/500 m | The simple bias correction algorithm | RMSE = 0.83 t ha−1 | [160] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qader, S.H.; Dash, J.; Alegana, V.A.; Khwarahm, N.R.; Tatem, A.J.; Atkinson, P.M. The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sens. 2021, 13, 3382. https://doi.org/10.3390/rs13173382
Qader SH, Dash J, Alegana VA, Khwarahm NR, Tatem AJ, Atkinson PM. The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sensing. 2021; 13(17):3382. https://doi.org/10.3390/rs13173382
Chicago/Turabian StyleQader, Sarchil Hama, Jadu Dash, Victor A. Alegana, Nabaz R. Khwarahm, Andrew J. Tatem, and Peter M. Atkinson. 2021. "The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World" Remote Sensing 13, no. 17: 3382. https://doi.org/10.3390/rs13173382
APA StyleQader, S. H., Dash, J., Alegana, V. A., Khwarahm, N. R., Tatem, A. J., & Atkinson, P. M. (2021). The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sensing, 13(17), 3382. https://doi.org/10.3390/rs13173382