A Time-Domain Simulation System of MICAP L-Band Radiometer for Pre-Launch RFI Processing Study
Abstract
:1. Introduction
2. System Architecture of MICAP/L-Rad
2.1. MICAP L-Rad System
2.2. Digital Subsystem
2.2.1. Digital Front End
2.2.2. Digital Back End
2.3. In-Orbit RFI Detection and Mitigation Method
3. Instrumental Full-Chain Time-Domain Simulation System of MICAP L-Rad
3.1. Visibility Function Generation
- is the so-called fringe washing function, which is determined by frequency response of the receivers forming the correlation baseline, and is negligible when the system bandwidth is small [36];
- is the central frequency (1413.5 MHz for MICAP L-Rad);
- are direction cosine, and are zenith angle and azimuth angle, respectively;
- is the normalized antenna spacing which represents correlation baseline length, and is the relative antenna spacing between every two antennas in the x-axis direction of a correlation baseline in x-axis direction;
- i and j are antenna indexes;
- and are the normalized antenna voltage patterns;
- is the physical temperature of the receiver, and is in units of K;
- and are antenna directivities;
- is the modified brightness temperature, and is in units of K;
3.2. Time-Domain IF Signal Modeling of Natural Radiation
3.2.1. Baseband Uncorrelated Band-Limited Gaussian Noise Generation
3.2.2. Linear Transformation Coefficient Generation
3.2.3. Baseband Correlated Band-Limited Gaussian Noise Generation
3.2.4. Power Setup
3.2.5. Quadrature Up-Conversion
3.3. Time-Domain IF Signal Modeling of RFI
- CW: carrier frequency (), power ();
- Pulse: carrier frequency (), pulse repetition period (), duty cycle (d) and power ();
- Chirp: carrier frequency (), modulation period (), modulation bandwidth () and power ();
- SSC: carrier frequency (), power () and symbol rate (S);
3.4. Simulation System
3.5. Functional Verification of the Simulation System
4. Analysis on Simulation Results
4.1. How RFI Affects Reconstructed Brightness Temperature
4.2. How RFI Affects Correlation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmitt, R.W. Salinity and the Global Water Cycle. Oceanography 2008, 21, 12–19. [Google Scholar] [CrossRef]
- Yin, X.; Boutin, J.; Martin, N.; Spurgeon, P.; Vergely, J.L.; Gaillard, F. Errors in SMOS Sea Surface Salinity and their dependency on a priori wind speed. Remote Sens. Environ. 2014, 146, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space. Proc. IEEE 2010, 98, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Le Vine, D.; Pellerano, F.; Lagerloef, G.; Yueh, S.; Colomb, R. Aquarius: A Mission to Monitor Sea Surface Salinity from Space. In Proceedings of the 2006 IEEE MicroRad, San Juan, PR, USA, 28 February–3 March 2006; pp. 87–90. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Focardi, P.; Horgan, K.A.; Knuble, J.; Ehsan, N.; Lucey, J.; Brambora, C.; Brown, P.R.; Hoffman, P.J.; French, R.T.; et al. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1954–1966. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhu, D.; Niu, L.; Wu, L.; Wang, C.; Chen, X.; Zhao, X.; Zhang, C.; Zhang, X.; Yin, X.; et al. MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 184–187. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, X.; Wang, Z.; Liu, H.; Lin, M. Preliminary Analysis of the Potential and Limitations of MICAP for the Retrieval of Sea Surface Salinity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2979–2990. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Johnson, J.T. A polarimetric survey of radio-frequency interference in C- and X-bands in the continental united states using WindSat radiometry. IEEE Trans. Geosci. Remote Sens. 2006, 44, 540–548. [Google Scholar] [CrossRef]
- Njoku, E.G.; Ashcroft, P.; Chan, T.K.; Li, L. Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 938–947. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Bettenhausen, M.H.; Johnston, W. WindSat radio-frequency interference signature and its identification over land and ocean. IEEE Trans. Geosci. Remote Sens. 2006, 44, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Oliva, R.; Daganzo, E.; Soldo, Y.; Kerr, Y.; Cabot, F.; Richaume, P.; Anterrieu, E.; Gutierrez, A.; Barbosa, J.; Lopes, G. Status of RFI in the 1400–1427 MHz passive band: The SMOS perspective. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Aksoy, M.; Johnson, J.T. A Study of SMOS RFI Over North America. IEEE Geosci. Remote Sens. Lett. 2013, 10, 515–519. [Google Scholar] [CrossRef]
- Bringer, A.; Daehn, M.; Johnson, J.T.; Soldo, Y.; Le Vine, D.M.; de Matthaeis, P.; Piepmeier, J.R.; Mohammed, P. SMAP Mission: Changes in the RFI Environment. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3754–3757. [Google Scholar] [CrossRef]
- Mohammed, P.N.; Aksoy, M.; Piepmeier, J.R.; Johnson, J.T.; Bringer, A. SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6035–6047. [Google Scholar] [CrossRef]
- Lan, H.; Zhao, T.; Zhang, Z.; Shi, J. A preliminary survey of L-band radio frequency interference over China by using aquarius observations. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1757–1760. [Google Scholar] [CrossRef]
- Park, H.; González-Gambau, V.; Camps, A. High Angular Resolution RFI Localization in Synthetic Aperture Interferometric Radiometers Using Direction-of-Arrival Estimation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; González-Gambau, V.; Camps, A.; Vall-llossera, M. Improved MUSIC-Based SMOS RFI Source Detection and Geolocation Algorithm. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1311–1322. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Camps, A.; Vall-Llossera, M.; Gonzalez-Gambau, V. Strong RFI Impact Mitigation in the Synthetic Aperture Interferometric Radiometer. In Proceedings of the 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Cambridge, MA, USA, 27–30 March 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Soldo, Y.; Khazaal, A.; Cabot, F.; Anterrieu, E.; Richaume, P. RFI mitigation for SMOS: A distributed approach. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3327–3330. [Google Scholar] [CrossRef]
- Le Vine, D.M.; de Matthaeis, P.; Ruf, C.S.; Chen, D.D. Aquarius RFI Detection and Mitigation Algorithm: Assessment and Examples. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4574–4584. [Google Scholar] [CrossRef]
- Ruf, C.; Misra, S. Detection of Radio Frequency Interference with the Aquarius Radiometer. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2722–2725. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Johnson, J.T.; Mohammed, P.N.; Bradley, D.; Ruf, C.; Aksoy, M.; Garcia, R.; Hudson, D.; Miles, L.; Wong, M. Radio-Frequency Interference Mitigation for the Soil Moisture Active Passive Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2014, 52, 761–775. [Google Scholar] [CrossRef]
- Ruf, C.; Gross, S.; Misra, S. RFI detection and mitigation for microwave radiometry with an agile digital detector. IEEE Trans. Geosci. Remote Sens. 2006, 44, 694–706. [Google Scholar] [CrossRef]
- Johnson, J.T.; Ball, C.; Chen, C.C.; McKelvey, C.; Smith, G.E.; Andrews, M.; O’Brien, A.; Garry, J.L.; Misra, S.; Bendig, R.; et al. Real-Time Detection and Filtering of Radio Frequency Interference Onboard a Spaceborne Microwave Radiometer: The CubeRRT Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1610–1624. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.; Kocz, J.; Jarnot, R.; Brown, S.T.; Bendig, R.; Felten, C.; Johnson, J.T. Development of an On-Board Wide-Band Processor for Radio Frequency Interference Detection and Filtering. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3191–3203. [Google Scholar] [CrossRef]
- Querol, J.; Perez, A.; Camps, A. A Review of RFI Mitigation Techniques in Microwave Radiometry. Remote Sens. 2019, 11, 3042. [Google Scholar] [CrossRef] [Green Version]
- Díez-García, R.; Camps, A. A Novel RFI Detection Method for Microwave Radiometers Using Multilag Correlators. IEEE Trans. Geosci. Remote Sens. 2021, 1–12, Early Access. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Zhang, A. End-to-End Simulation of WCOM IMI Sea Surface Salinity Retrieval. Remote Sens. 2019, 11, 217. [Google Scholar] [CrossRef] [Green Version]
- Camps, A.; Park, H.; Kang, Y.; Bandeiras, J.; Barbosa, J.; Vieira, P.; Friaças, A.; D’Addio, S. Microwave Imaging Radiometers by Aperture Synthesis Performance Simulator (Part 2): Instrument Modeling, Calibration, and Image Reconstruction Algorithms. J. Imaging 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Corbella, I.; Duffo, N.; Vall-llossera, M.; Camps, A.; Torres, F. The visibility function in interferometric aperture synthesis radiometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1677–1682. [Google Scholar] [CrossRef]
- Niu, L.; Liu, H.; Wu, J. Analysis and experimental study of high stability microwave radiometer. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1910–1913. [Google Scholar] [CrossRef]
- Lyons, R.G. Understanding Digital Signal Processing, 3rd ed.; Prentice Hall: New York, NY, USA, 2011; pp. 342–343. [Google Scholar]
- Zahirniak, D.R.; Sharpin, D.L.; Fields, T.W. A hardware-efficient, multirate, digital channelized receiver architecture. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 137–152. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Gasiewski, A.J. Digital correlation microwave polarimetry: Analysis and demonstration. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2392–2410. [Google Scholar] [CrossRef]
- Hagen, J.B.; Farley, D.T. Digital-correlation techniques in radio science. Radio Sci. 1973, 8, 775–784. [Google Scholar] [CrossRef]
- Ruf, C.S.; Swift, C.T.; Tanner, A.B.; Le Vine, D.M. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans. Geosci. Remote Sens. 1988, 26, 597–611. [Google Scholar] [CrossRef]
- Corbella, I.; Torres, F.; Camps, A.; Duffo, N.; Vall-llossera, M. Brightness-Temperature Retrieval Methods in Synthetic Aperture Radiometers. IEEE Trans. Geosci. Remote Sens. 2009, 47, 285–294. [Google Scholar] [CrossRef]
- Ruf, C.; Li, J. A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2187–2196. [Google Scholar] [CrossRef]
- Mahafza, B.R. MATLAB Simulations for Radar Systems Design, 1st ed.; CRC Press: London, UK, 2000; pp. 8–9. [Google Scholar]
- Zhang, A.; Liu, H.; Wu, L.; Niu, L.; Zhang, C.; Chen, X.; Wu, J. The Application of the G-matrix Modification Method to the Imaging of the 1-D Synthetic Aperture Microwave Radiometer. J. Electron. Inf. Technol. 2019, 41, 2632–2638. [Google Scholar] [CrossRef]
- Soldo, Y.; Oliva, R.; Vine, D.L.; Bringer, A.; de Matthaels, P. Retrieval of RFI Characteristics Using L-Band Satellite Data. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3766–3769. [Google Scholar] [CrossRef]
- Aksoy, M.; Rajabi, H.; Atrey, P.; Mohamed Nazar, I. Characteristics of the Global Radio Frequency Interference in the Protected Portion of L-Band. Remote Sens. 2021, 13, 253. [Google Scholar] [CrossRef]
Instrument | L-Rad | C-Rad | K-Rad |
---|---|---|---|
Frequency | 1.4135 GHz | 6.9 GHz | 18.7 GHz |
Bandwidth | 25 MHz | 200 MHz | 200 MHz |
Polarization | H,V,T3 | H,V | H,V |
Incident angle | 30~50 | 30~50 | 30~50 |
Radiometric resolution @ sampling interval (boresight) | 0.15 K @ 75 km | 0.5 K @15 km | 0.5 K @15 km |
Spatial resolution (along-track) | 75 km | 15 km | 15 km |
Spatial resolution (cross-track) | 50~100 km | 25~50 km | 25~50 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Guo, X.; Zhang, C.; Han, D.; Niu, L.; Liu, H.; Wu, J. A Time-Domain Simulation System of MICAP L-Band Radiometer for Pre-Launch RFI Processing Study. Remote Sens. 2021, 13, 3230. https://doi.org/10.3390/rs13163230
Guo T, Guo X, Zhang C, Han D, Niu L, Liu H, Wu J. A Time-Domain Simulation System of MICAP L-Band Radiometer for Pre-Launch RFI Processing Study. Remote Sensing. 2021; 13(16):3230. https://doi.org/10.3390/rs13163230
Chicago/Turabian StyleGuo, Tianshu, Xi Guo, Cheng Zhang, Donghao Han, Lijie Niu, Hao Liu, and Ji Wu. 2021. "A Time-Domain Simulation System of MICAP L-Band Radiometer for Pre-Launch RFI Processing Study" Remote Sensing 13, no. 16: 3230. https://doi.org/10.3390/rs13163230
APA StyleGuo, T., Guo, X., Zhang, C., Han, D., Niu, L., Liu, H., & Wu, J. (2021). A Time-Domain Simulation System of MICAP L-Band Radiometer for Pre-Launch RFI Processing Study. Remote Sensing, 13(16), 3230. https://doi.org/10.3390/rs13163230