An Investigation of NEXRAD-Based Quantitative Precipitation Estimates in Alaska
Abstract
:1. Introduction
2. Data and Methodology
2.1. NEXRAD Stage IV Alaska
2.2. NEXRAD Level III Digital Precipitation Array
2.3. U.S. Climate Reference Network
2.4. Methodology
3. Results
3.1. Long-Term Accumulations/Climatology
3.2. CRN versus Radar-Based Precipitation Estimates
3.3. Radar-Based Precipitation Performance
4. Discussion
5. Conclusions
- Yearly precipitation in Alaska ranges from 150 mm in the highest latitude to 3500 mm in the Panhandle regions.
- Maximum 6-hourly precipitation based on the NCEP Stage IV data set generally happens in the fall for the coastal and Panhandle climate regions, in the summer for the interior climate regions, and in the winter/fall for the high latitudes.
- For air temperatures less than 10 °C, the frequency of precipitation is highest during the morning hours of 5:00–10:00 a.m. local. For air temperatures greater than 10 °C, the highest frequency of precipitation shifts to the early evening hours of 5:00–7:00 p.m.
- Approximately 30% of precipitation in Alaska is frozen or mixed phase. Approximately 45% of precipitation in Alaska happens in the 2–10 °C temperature range and approximately 20% of precipitation happens in the 10–20 °C temperature range. There is a very low frequency of precipitation when temperatures are >20 °C.
- An analysis of the NEXRAD site-specific DPA showed the effective coverage of the radar to be approximately 80 km. The Nome, AK, USA (PAEC) site shows an effective coverage even less than this with a particular low bias in conditional mean as compared to the other NEXRAD sites in Alaska.
- The statistical analysis shows that estimating precipitation in the frozen and mixed phases still poses challenges. The radar-based products underestimate precipitation. The correlation is quite low in these phases of temperature, and the errors (FSE) are large. When the temperatures increase, the statistical analysis shows that the biases improve (closer to 1.0). In addition, the correlations improve (closer to 1.0) and the errors (FSE) reduce drastically.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kane, D.L.; Stuefer, S.L. Reflecting on the Status of Precipitation Data Collection in Alaska: A Case Study. Hydrol. Res. 2014, 46, 478–493. [Google Scholar] [CrossRef]
- Norin, L.; Devasthale, A.; L’Ecuyer, T.; Wood, N.B.; Smalley, M. Intercomparison of Snowfall Estimates Derived from the CloudSat Cloud Profiling Radar and the Ground-Based Weather Radar Network over Sweden. Atmospheric Meas. Tech. 2015, 8, 5009–5021. [Google Scholar] [CrossRef] [Green Version]
- Smalley, M.; L’Ecuyer, T.; Lebsock, M.; Haynes, J. A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat Cloud Profiling Radar. J. Hydrometeorol. 2014, 15, 444–458. [Google Scholar] [CrossRef]
- Smalley, M.; Kirstetter, P.-E.; L’Ecuyer, T. How Frequent Is Precipitation over the Contiguous United States? Perspectives from Ground-Based and Spaceborne Radars. J. Hydrometeorol. 2017, 18, 1657–1672. [Google Scholar] [CrossRef]
- Klazura, G.E.; Imy, D.A. A Description of the Initial Set of Analysis Products Available from the NEXRAD WSR-88D System. Bull. Am. Meteorol. Soc. 1993, 74, 1293–1311. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- National Weather Service Headquarters Silver Spring, MD. Service Change Notice 17-17. 2017. Available online: https://www.weather.gov/media/notification/pdfs/scn17-17rtma_urma_aaa.pdf (accessed on 1 February 2021).
- Nelson, B.R.; Prat, O.; Seo, D.-J.; Habib, E. Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons. Weather Forecast. 2016, 31, 371–394. [Google Scholar] [CrossRef]
- Miller, P.A.; Barth, M.; Benjamin, L.; Helms, D.; Campbell, M.; Facundo, J.; O’Sullivan, J. The Meteorological Assimilation Data Ingest System (MADIS)—Providing Value-Added Observations to the Meteorological Community. In Proceedings of the 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction, Washington, DC, USA, 1 August 2005. [Google Scholar]
- Diamond, H.J.; Karl, T.R.; Palecki, M.A.; Baker, C.B.; Bell, J.E.; Leeper, R.D.; Easterling, D.R.; Lawrimore, J.H.; Meyers, T.P.; Helfert, M.R.; et al. Climate Reference Network After One Decade of Operations: Status and Assessment. Bull. Am. Meteorol. Soc. 2012, 94, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Fulton, R.A.; Breidenbach, J.P.; Seo, D.-J.; Miller, D.A.; O’Bannon, T. The WSR-88D Rainfall Algorithm. Weather Forecast. 1998, 13, 377–395. [Google Scholar] [CrossRef]
- Lin, Y.; Mitchell, K.E. The NCEP Stage II/IV Hourly Precipitation Analyses: Development and Applications. In Proceedings of the 19th Conference on Hydrology, San Diego, CA, USA, 9–13 January 2005. [Google Scholar]
- Smith, J.A.; Seo, D.J.; Baeck, M.L.; Hudlow, M.D. An Intercomparison Study of NEXRAD Precipitation Estimates. Water Resour. Res. 1996, 32, 2035–2045. [Google Scholar] [CrossRef]
- Young, C.B.; Nelson, B.R.; Kruger, A.; Baeck, M.L.; Peters-Lidard, C.D.; Bradley, A.A.; Smith, J.A. An Evaluation of NEXRAD Precipitation Estimates in Complex Terrain. J. Geophys. Res. Space Phys. 1999, 104, 19691–19703. [Google Scholar] [CrossRef]
- Droegemeier, K.; Levit, J.J.; Kelleher, K.; Crum, T.D.; Delgreco, S.A.; Miller, L.; Fulker, D.W.; Edmon, H. Project CRAFT: A Test Bed for Demonstrating the Real Time Acquisition and Archival of WSR-88D Level II Data. In Proceedings of the 18th International Conference on IIPS, Orlando, FL, USA, 12–17 January 2002. [Google Scholar]
- Ansari, S.; Del Greco, S.; Kearns, E.; Brown, O.; Wilkins, S.; Ramamurthy, M.; Weber, J.; May, R.; Sundwall, J.; Layton, J.; et al. Unlocking the Potential of NEXRAD Data through NOAA’s Big Data Partnership. Bull. Am. Meteorol. Soc. 2018, 99, 189–204. [Google Scholar] [CrossRef]
- Leeper, R.; Rennie, J.; Palecki, M.A. Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison. J. Atmospheric Ocean. Technol. 2015, 32, 703–721. [Google Scholar] [CrossRef]
- Leeper, R.; Palecki, M.A.; Davis, E. Methods to Calculate Precipitation from Weighing-Bucket Gauges with Redundant Depth Measurements. J. Atmospheric Ocean. Technol. 2015, 32, 1179–1190. [Google Scholar] [CrossRef]
- Kitchen, M.; Blackall, R. Representativeness Errors in Comparisons Between Radar and Gauge Measurements of Rainfall. J. Hydrol. 1992, 134, 13–33. [Google Scholar] [CrossRef]
- Habib, E.; Krajewski, F.W.; Ciach, G.J. Estimation of Inter-Station Correlation Coefficient in Rainfall Data. J. Hydrometeorol. 2001, 2, 621–629. [Google Scholar] [CrossRef]
- Nelson, B.R.; Prat, O.P.; Leeper, R. Using Ancillary Information from Radar-Based Observations and Rain Gauges to Identify Error and Bias. J. Hydrometeorol. 2021, 1, 1249–1258. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Walsh, J.E.; Thoman, R.L.; Bhatt, U.S. Using Climate Divisions to Analyze Variations and Trends in Alaska Tem-Perature and Precipitation. J. Clim. 2014, 27, 2800–2818. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Ciach, G.J.; Habib, E. An Analysis of Small-Scale Rainfall Variability in Different Climatic Regimes. Hydrol. Sci. J. 2003, 48, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, A.J.; Clark, M.P.; Barlage, M.P.; Newman, A.J.; Xue, L.; Arnold, J.R.; Rasmussen, R.M. High-Resolution Historical Climate Simulations over Alaska. J. Appl. Meteorol. Clim. 2018, 57, 709–731. [Google Scholar] [CrossRef]
- Poujol, B.; Prein, A.F.; Newman, A.J. Kilometer-Scale Modeling Projects a Tripling of Alaskan Convective Storms in Future Climate. Clim. Dyn. 2020, 55, 3543–3564. [Google Scholar] [CrossRef]
- Markon, C.J.; Trainor, S.F.; Chapin, F.S. The United States National Climate Assessment—Alaska Technical Regional Report; US Geological Survey: Reston, VA, USA, 2012. [CrossRef]
- Bennett, K.E.; Walsh, J. Spatial and Temporal Changes in Indices of Extreme Precipitation and Temperature for Alaska. Int. J. Clim. 2015, 35, 1434–1452. [Google Scholar] [CrossRef]
Site ID | Location | Level III Available | Latitude (°) | Longitude (°) | Elevation (m) |
---|---|---|---|---|---|
PABC | Bethel, AK, USA | 1 May 2001 | 60.79 | −161.88 | 162 |
PAHG | Anchorage, AK, USA | 1 May 2001 | 60.73 | −151.35 | 242 |
PAPD | Fairbanks, AK, USA | 1 May 2001 | 65.04 | −147.50 | 2593 |
PAKC | King Salmon, AK, USA | 1 May 2001 | 58.68 | −156.63 | 63 |
PAIH | Middleton Island, AK, USA | 1 May 2001 | 59.46 | −146.30 | 67 |
PAEC | Nome, AK, USA | 1 May 2001 | 64.51 | −165.30 | 54 |
PACG | Sitka, AK, USA | 1 May 2001 | 56.85 | −135.53 | 209 |
CRN Gauge | Commission Date | Latitude | Min. Average Hourly Temperature (°C) | Max. Average Hourly Temperature (°C) | Maximum Hourly Rainfall (mm) |
---|---|---|---|---|---|
Metlakatla | 28 September 2015 | 55.05 | −45.4 | 24.4 | 15.5 |
Sand_Point | 21 July 2013 | 55.35 | −42.8 | 20.1 | 7.6 |
Sitka | 23 September 2012 | 57.06 | −44.5 | 32.8 | 9.9 |
St._Paul | 17 September 2018 | 57.16 | −24.5 | 27.3 | 23.9 |
King_Salmon | 11 September 2011 | 58.21 | −36.9 | 30.5 | 18.8 |
Gustavus | 22 July 2013 | 58.43 | −18.3 | 16.7 | 7.9 |
Aleknagik | 12 October 2020 | 59.28 | −31.5 | 24.6 | 11.6 |
Yakutat | 17 September 2018 | 59.51 | −42.1 | 23.2 | 4.9 |
Port_Alsworth | 28 September 2015 | 60.2 | −43 | 25.9 | 23.2 |
Cordova | 24 July 2013 | 60.47 | −24.1 | 28.7 | 9.2 |
Kenai | 6 September 2010 | 60.72 | −37.7 | 32.5 | 7.4 |
Bethel | 21 July 2013 | 61.35 | −14.8 | 28.5 | 19.1 |
Tok | 28 September 2015 | 62.74 | −49.5 | 32.4 | 11.5 |
Glennallen | 6 September 2010 | 63.03 | −16 | 20.4 | 16 |
Denali | 4 September 2017 | 63.45 | −19.6 | 29.1 | 22.1 |
Ruby | 22 September 2019 | 64.5 | −32.2 | 31.1 | 10.4 |
Fairbanks | 24 July 2013 | 64.97 | −33.1 | 28.8 | 18.8 |
Selawik | 20 July 2014 | 66.56 | −41 | 28.3 | 16.5 |
Red_Dog | 11 September 2011 | 68.03 | −36.8 | 29 | 7.3 |
Ivotuk | 22 July 2013 | 68.49 | −37.9 | 28.5 | 14.8 |
Toolik_Lake | 6 September 2016 | 68.65 | −48.4 | 31.6 | 10.5 |
Deadhorse | 24 July 2013 | 70.16 | −12.9 | 30.4 | 31.2 |
Utqiagvik | 6 September 2016 | 71.32 | −37.6 | 28.1 | 21 |
Frozen (%) | Mixed (%) | Cool (%) | Warm (%) | |
---|---|---|---|---|
T < 0 °C | 0 °C < T < 2°C | 2 °C < T < 10 °C | 10 °C < T | |
Aleknagik | 29.82 | 13.80 | 40.18 | 16.15 |
Bethel | 3.29 | 13.40 | 54.83 | 28.48 |
Cordova | 14.55 | 12.67 | 52.32 | 20.46 |
Deadhorse | 1.49 | 4.30 | 62.67 | 31.54 |
Denali | 10.76 | 16.02 | 49.68 | 23.55 |
Fairbanks | 17.38 | 14.62 | 46.63 | 21.36 |
Glennallen | 4.85 | 10.37 | 69.35 | 15.43 |
Gustavus | 14.11 | 17.48 | 60.07 | 8.34 |
Ivotuk | 42.96 | 6.22 | 25.93 | 24.67 |
Kenai | 28.76 | 12.45 | 34.77 | 23.98 |
King_Salmon | 29.10 | 7.70 | 32.97 | 29.91 |
Metlakatla | 54.87 | 8.60 | 26.80 | 9.73 |
Port_Alsworth | 44.93 | 11.37 | 36.08 | 7.62 |
Red_Dog | 34.92 | 6.36 | 45.62 | 13.10 |
Ruby | 14.27 | 19.29 | 36.87 | 29.40 |
Sand_Point | 58.48 | 10.18 | 27.66 | 3.68 |
Selawik | 31.00 | 10.57 | 43.75 | 14.61 |
Sitka | 32.44 | 3.06 | 32.95 | 31.30 |
St._Paul | 12.56 | 7.19 | 53.64 | 26.61 |
Tok | 38.92 | 7.22 | 24.26 | 29.27 |
Toolik_Lake | 39.24 | 10.30 | 24.55 | 25.67 |
Utqiagvik | 44.42 | 6.06 | 30.69 | 18.83 |
Yakutat | 55.08 | 8.19 | 31.10 | 5.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, B.R.; Prat, O.P.; Leeper, R.D. An Investigation of NEXRAD-Based Quantitative Precipitation Estimates in Alaska. Remote Sens. 2021, 13, 3202. https://doi.org/10.3390/rs13163202
Nelson BR, Prat OP, Leeper RD. An Investigation of NEXRAD-Based Quantitative Precipitation Estimates in Alaska. Remote Sensing. 2021; 13(16):3202. https://doi.org/10.3390/rs13163202
Chicago/Turabian StyleNelson, Brian R., Olivier P. Prat, and Ronald D. Leeper. 2021. "An Investigation of NEXRAD-Based Quantitative Precipitation Estimates in Alaska" Remote Sensing 13, no. 16: 3202. https://doi.org/10.3390/rs13163202