Heterogeneous Clutter Suppression for Airborne Radar STAP Based on Matrix Manifolds
Abstract
:1. Introduction
2. Array Signal Model and Problem Formulation
3. Training Data Selection Based on Manifolds in Heterogeneous Environments
3.1. The Establishment of a Matrix Manifold
3.2. The Properties of the Distribution of Training Data in Heterogeneous Environments
3.3. The Screening of Training Data
4. Clutter Suppression Based on Matrix Manifolds
4.1. Clutter Covariance Matrix Estimation on Matrix Manifolds
4.2. Criteria for Dissimilarity Metric on Manifolds
5. Experimental Results and Analysis
5.1. Clutter Suppression and Target Detection Performance
5.1.1. Simulated Data
5.1.2. Real Data
5.2. Influence Analysis of Outliers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Liu, Y.; He, Y.; Zhang, T.; Peng, Z. Structure-adaptive clutter suppression for infrared small target detection: Chain-growth filtering. Remote Sens. 2019, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Gracheva, V.; Ender, J. Multichannel analysis and suppression of sea clutter for airborne microwave radar systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2385–2399. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, G.; Li, J.; Gu, T. A clutter suppression method based on NSS-RPCA in heterogeneous environments for SAR-GMTI. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5880–5891. [Google Scholar] [CrossRef]
- Lightstone, L.; Faubert, D.; Rempel, G. Multiple phase centre DPCA for airborne radar. In Proceedings of the IEEE National Radar Conference, Los Angeles, CA, USA, 12–13 March 1991; pp. 36–40. [Google Scholar]
- Chapin, E.; Chen, C.W. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag. 2009, 24, 13–18. [Google Scholar] [CrossRef]
- Ward, J. Space-Time Adaptive Processing for Airborne Radar; Technical Report TR-1015; MIT Lincoln Laboratory: Lexington, MA, USA, 1994. [Google Scholar]
- Melvin, W. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 621–633. [Google Scholar] [CrossRef]
- Klemm, R. Principles of Space-Time Adaptive Processing, 3rd ed.; Radar, Sonar, Navigation and Avionics Series; IET: London, UK, 2006. [Google Scholar]
- Guerci, J.R. Space-Time Adaptive Processing for Radar; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Reed, I.; Mallett, J.; Brennan, L. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, AES-10, 853–863. [Google Scholar] [CrossRef]
- Martorella, M.; Gelli, S.; Bacci, A. Ground moving target imaging via SDAP-ISAR processing: Review and new trends. Sensors 2021, 21, 2391. [Google Scholar] [CrossRef]
- Rangaswamy, M.; Michels, J.H.; Himed, B. Statistical analysis of the non-homogeneity detector for STAP applications. Digit. Signal Process. 2004, 14, 253–267. [Google Scholar] [CrossRef]
- Shackelford, A.; Gerlach, K.; Blunt, S. Partially adaptive STAP using the FRACTA algorithm. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 58–69. [Google Scholar] [CrossRef]
- Tang, B.; Tang, J.; Peng, Y. Detection of heterogeneous samples based on loaded generalized inner product method. Digit. Signal Process. 2012, 22, 605–613. [Google Scholar] [CrossRef]
- Li, X.; Xie, W.; Wang, Y. Cyclic training sample selection and cancellation technique for airborne STAP radar under nonhomogeneous environment. Digit. Signal Process. 2020, 104, 102803. [Google Scholar] [CrossRef]
- Song, C.; Wang, B.; Xiang, M.; Wang, Z.; Xu, W.; Sun, X. A novel post-doppler parametric adaptive matched filter for airborne multichannel radar. Remote Sens. 2020, 12, 4017. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.; Liao, G. A study of reduced-rank stap. J. Electron. (China) 2000, 17, 289–296. [Google Scholar] [CrossRef]
- Kang, B. Estimation of structured covariance matrices for radar STAP. IEEE Trans. Aerosp. Electron. Syst. 2015, 30, 24–25. [Google Scholar] [CrossRef]
- Guo, L.; Deng, W.; Yao, D.; Yang, Q.; Ye, L.; Zhang, X. A knowledge-based auxiliary channel STAP for target detection in shipborne HFSWR. Remote Sens. 2021, 13, 621. [Google Scholar] [CrossRef]
- Burintramart, S.; Sarkar, T.K.; Zhang, Y.; Wicks, M.C. Performance comparison between statistical-based and direct data domain STAPs. Digit. Signal Process. 2007, 17, 737–755. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Li, H.; Himed, B. Knowledge-aided parametric adaptive matched filter with automatic combining for covariance estimation. IEEE Trans. Signal Process. 2014, 62, 4713–4722. [Google Scholar] [CrossRef]
- Han, S.; Fan, C.; Huang, X. A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 213–217. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors. IEEE Trans. Signal Process. 2021. [Google Scholar] [CrossRef]
- Arnaudon, M.; Barbaresco, F.; Yang, L. Riemannian medians and means with applications to radar signal processing. IEEE J. Sel. Top. Signal Process. 2013, 7, 595–604. [Google Scholar] [CrossRef]
- Barbaresco, F. Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar]
- Abramovich, Y.I.; Besson, O. Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach—Part 1: The over-sampled case. IEEE Trans. Signal Process. 2013, 61, 5807–5818. [Google Scholar] [CrossRef] [Green Version]
- Besson, O.; Abramovich, Y.I. Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach—Part 2: The under-sampled case. IEEE Trans. Signal Process. 2013, 61, 5819–5829. [Google Scholar] [CrossRef] [Green Version]
- Hua, X.; Peng, L. MIG median detectors with manifold filter. Signal Process. 2021, 188, 108176. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G. Target recognition in SAR images via classification on riemannian manifolds. IEEE Geosci. Remote Sens. Lett. 2014, 12, 199–203. [Google Scholar] [CrossRef]
- Tiomoko, M.; Bouchard, F.; Ginolhac, G.; Couillet, R. Random matrix improved covariance estimation for a large class of metrics. J. Stat. Mech. Theory Exp. 2020, 2020, 124011. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Pallotta, L.; Farina, A. Covariance matrix estimation via geometric barycenters and its application to radar training data selection. IET Radar Sonar Navig. 2013, 7, 600–614. [Google Scholar] [CrossRef]
- Balaji, B.; Barbaresco, F. Application of riemannian mean of covariance matrices to space-time adaptive processing. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31 October–2 November 2012; pp. 50–53. [Google Scholar]
- Moakher, M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- Harandi, M.; Salzmann, M.; Hartley, R. Dimensionality reduction on spd manifolds: The emergence of geometry-aware methods. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 48–62. [Google Scholar] [CrossRef] [Green Version]
- van der Maaten, L.; Hinton, G. Visualizing data using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Amari, S. Information Geometry and Its Applications; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Nielsen, F.; Nock, R. Total jensen divergences: Definition, properties and clustering. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 1–27. [Google Scholar]
- Nielsen, F.; Nock, R. Sided and symmetrized bregman centroids. IEEE Trans. Inf. Theory 2009, 55, 2882–2904. [Google Scholar] [CrossRef] [Green Version]
- Ilea, I.; Bombrun, L.; Terebes, R.; Borda, M.; Germain, C. An m-estimator for robust centroid estimation on the manifold of covariance matrices. IEEE Signal Process. Lett. 2016, 23, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Robey, F.; Fuhrmann, D.; Kelly, E.; Nitzberg, R. A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 1992, 28, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://spib.rice.edu/spib/mtn_top.html (accessed on 29 May 2021).
- Titi, G.; Marshall, D. The ARPA/NAVY mountaintop program: Adaptive signal processing for airborne early warning radar. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; pp. 1165–1168. [Google Scholar]
Metrics | IF (dB) | Robustness | Computational Cost |
---|---|---|---|
Arithmetic | 41.17 | 34.2314 | low |
Riemannian | 46.90 | 0.5270 | high |
KL | 41.73 | 0.3066 | low |
TSJD | 58.44 | 0.3780 | relatively low |
Parameters | Symbols | Values |
---|---|---|
Number of coherent pulses | 16 | |
Number of array elements | 10 | |
Radar platform velocity | 120 m/s | |
Height of the radar platform | 6 km | |
Carrier wavelength | 0.16 m | |
Inter-element spacing | 0.08 m | |
Number of training data | 32 | |
Pulse repetition frequency | 1500 Hz | |
Clutter to noise ratio | 40 dB |
Methods | SCNR (dB) (Dataset 1) | SCNR (dB) (Dataset 2) |
---|---|---|
Geometric | 29.33 | 27.48 |
LSMI | 24.66 | 20.13 |
3DT | 21.80 | 20.56 |
Arithmetic | 27.03 | 25.14 |
EASTR | 26.40 | 23.87 |
RMI | 27.53 | 26.06 |
Karcher | 20.45 | 18.14 |
M-estimator | 20.97 | 18.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cheng, Y.; Wu, H.; Wang, H. Heterogeneous Clutter Suppression for Airborne Radar STAP Based on Matrix Manifolds. Remote Sens. 2021, 13, 3195. https://doi.org/10.3390/rs13163195
Chen X, Cheng Y, Wu H, Wang H. Heterogeneous Clutter Suppression for Airborne Radar STAP Based on Matrix Manifolds. Remote Sensing. 2021; 13(16):3195. https://doi.org/10.3390/rs13163195
Chicago/Turabian StyleChen, Xixi, Yongqiang Cheng, Hao Wu, and Hongqiang Wang. 2021. "Heterogeneous Clutter Suppression for Airborne Radar STAP Based on Matrix Manifolds" Remote Sensing 13, no. 16: 3195. https://doi.org/10.3390/rs13163195
APA StyleChen, X., Cheng, Y., Wu, H., & Wang, H. (2021). Heterogeneous Clutter Suppression for Airborne Radar STAP Based on Matrix Manifolds. Remote Sensing, 13(16), 3195. https://doi.org/10.3390/rs13163195