Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Acquisition and Preprocessing
3. Method
3.1. Visual Feature Extraction Method for UAV Images
3.1.1. Water Visual Feature Extraction Based on a Wavelet Transform
- (1)
- To establish the filter, 6 scales (6, 8, 10, 12, 14, and 16) and 4 directions (0°, 45°, 90°, and 135°) are selected. In this way, 24 filters are formed;
- (2)
- The filter is convolved with each image block in the spatial domain, and each image block can obtain 24 filter outputs.
- (3)
- Each image block passes through 24 outputs of the Gabor filter. These outputs are image block size images. If they are directly applied as feature vectors, the dimension of the feature space will be very large. In this paper, the variance in the 24 outputs is considered the texture feature value.
3.1.2. Water Visual Feature Extraction Based on the Grey Level Co-Occurrence Matrix
3.2. Water Detection Based on SU-Net
3.2.1. SU-Net Deep Learning Model
3.2.2. Implementation and Model Training
3.3. Evaluation Metrics
4. Results
4.1. Workflow of the Experiments
4.2. Accuracy Evaluation
4.3. Applicability Evaluation of the Visual Features
4.4. Urban Water Body Mapping
5. Discussion
5.1. Low-Precision Extraction of Mixed Surface Features and Water Bodies
5.2. Interference of Shadows and Other Dark Objects on Water Extraction
5.3. Expectation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, Z.; Li, H.; Liu, Y.; Wang, W. DEM-based extraction and analysis of digital river network of Tarim River. Water Resour. Hydropower Eng. 2020, 51, 54–61. [Google Scholar]
- Rishikeshan, C.A.; Ramesh, H. An Automated Mathematical Morphology Driven Algorithm for Water Body Extraction from Remotely Sensed Images. ISPRS J. Photogramm. Remote Sens. 2018, 146, 11–21. [Google Scholar] [CrossRef]
- Gebrehiwot, A.; Hashemi-Beni, L.; Thompson, G.; Kordjamshidi, P.; Langan, T.E. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data. Sensors 2019, 19, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Zhang, X.; Huang, Z.; Jiang, H. A water extraction technique based on high-spatial remote sensing images. J. Zhejiang Univ. Sci. Ed. 2004, 31, 701–707. [Google Scholar]
- Wang, N.; Cheng, J.; Zhang, H.; Cao, H.; Liu, J. Dynamic monitoring and application of remote sensing for aquaculture water. J. Fish. Sci. China 2019, 26, 893–903. [Google Scholar]
- Jawak, S.D.; Luis, A.J. A Rapid Extraction of Water Body Features from Antarctic Coastal Oasis Using Very High-Resolution Satellite Remote Sensing Data. Aquat. Procedia 2015, 4, 125–132. [Google Scholar] [CrossRef]
- Masocha, M.; Dube, T.; Makore, M.; Shekede, M.D.; Funani, J. Surface Water Bodies Mapping in Zimbabwe Using Landsat 8 OLI Multispectral Imagery: A Comparison of Multiple Water Indices. Phys. Chem. Earth Parts A/B/C 2018, 106, 63–67. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a Global ~90m Water Body Map Using Multi-Temporal Landsat Images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Prendes, J.; Chabert, M.; Pascal, F.; Giros, A.; Tourneret, J.-Y. Change Detection for Optical and Radar Images Using a Bayesian Nonparametric Model Coupled with a Markov Random Field. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 1513–1517. [Google Scholar]
- Sumaiya, M.N.; Shantha Selva Kumari, R. Unsupervised Change Detection of Flood Affected Areas in SAR Images Using Rayleigh-based Bayesian Thresholding. IET Radar Sonar Navig. 2018, 12, 515–522. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, H.; Wang, C. Water-Body Types Classification Using Radarsat-2 Fully Polarimetric SAR Data. In Proceedings of the 2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Bali, Indonesia, 3–5 December 2015; pp. 1–5. [Google Scholar]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.-Y.; Wen, T.-H. Extracting Urban Water Bodies from High-Resolution Radar Images: Measuring the Urban Surface Morphology to Control for Radar’s Double-Bounce Effect. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102003. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.; Bates, P.; Mason, D. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of Flooded Urban Areas in High Resolution Synthetic Aperture Radar Images Using Double Scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Anagnostou, E.N.; Allen, G.H.; Robert Brakenridge, G.; Kettner, A.J. Near-Real-Time Non-Obstructed Flood Inundation Mapping Using Synthetic Aperture Radar. Remote Sens. Environ. 2019, 221, 302–315. [Google Scholar] [CrossRef]
- Sun, H.; Dai, X.; Shou, W.; Wang, J.; Ruan, X. An Efficient Decision Support System for Flood Inundation Management Using Intermittent Remote-Sensing Data. Remote Sens. 2021, 13, 2818. [Google Scholar] [CrossRef]
- Ji, L.; Gong, P.; Geng, X.; Zhao, Y. Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product. Remote Sens. 2015, 7, 13507–13527. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, R.; Yang, X.; Wang, J.; Latif, A. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning. Water 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Ireland, G.; Volpi, M.; Petropoulos, G.P. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sens. 2015, 7, 3372–3399. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open Water Detection in Urban Environments Using High Spatial Resolution Remote Sensing Imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Lu, F.; Gong, Z. Construction of cloud-shadow-water mask based on Random Forests algorithm. Remote Sens. Land Resour. 2016, 28, 73–79. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water Body Extraction and Change Detection Using Time Series: A Case Study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, e258619. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2015, arXiv:1411.4038. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science; Springer International Publishing: Cham, Germany, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7. [Google Scholar]
- Jain, A.K.; Farrokhnia, F. Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhang, Z.-L.; Hou, Z.-Q. Textured Image Segmentation Based on Gauss Markov Random Field Mixture Model. Acta Geod. Cartogr. Sin. 2006, 35, 224–228. [Google Scholar]
- Jain, A.K.; Ratha, N.K.; Lakshmanan, S. Object Detection Using Gabor Filters. Pattern Recognit. 1997, 30, 295–309. [Google Scholar] [CrossRef]
- Gopi, K. Fingerprint Recognition Using Gabor Filter And Frequency Domain Filtering. IOSR J. Electron. Commun. Eng. 2012, 2, 17–21. [Google Scholar] [CrossRef]
- Tamilselvi, P.R.; Thangaraj, P. Improved Gabor Filter for Extracting Texture Edge Features in Ultrasound Kidney Images. Mod. Appl. Sci. 2010, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Mohanaiah, P.; Sathyanarayana, P.; Gurukumar, L. Image Texture Feature Extraction Using GLCM Approach. Int. J. Sci. Res. Publ. 2013, 3, 1–5. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A Software Package for Image Texture Analysis. Comput. Methods Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R. Texture Discrimination by Gabor Functions. Biol. Cybern. 1986, 55, 71–82. [Google Scholar] [CrossRef]
- Bianconi, F.; Fernández, A. Evaluation of the Effects of Gabor Filter Parameters on Texture Classification. Pattern Recognit. 2007, 40, 3325–3335. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.S. Image Representation Using 2D Gabor Wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A Cloud Detection Algorithm for Satellite Imagery Based on Deep Learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Shao, L.; Allinson, N. Building Recognition in Urban Environments: A Survey of State-of-the-Art and Future Challenges. Inf. Sci. 2014, 277, 406–420. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Paap, A.; Ahderom, S.; Apopei, B.; Alameh, K. Plant Discrimination by Support Vector Machine Classifier Based on Spectral Reflectance. Comput. Electron. Agric. 2018, 148, 250–258. [Google Scholar] [CrossRef]
- Smith, N.; Gales, M.J.F. Speech Recognition Using SVMs. In International Conference on Neural Information Processing Systems: Natural and Synthetic; MIT: Vancouver, BC, Canada, 2001; pp. 1197–1204. [Google Scholar]
- Kim, S.-K.; Park, Y.J.; Toh, K.-A.; Lee, S. SVM-Based Feature Extraction for Face Recognition. Pattern Recognit. 2010, 43, 2871–2881. [Google Scholar] [CrossRef]
- Yan, T.; Liu, Q.; Wei, Q.; Chen, F.; Deng, T. Classification of Lymphoma Cell Image Based on Improved SVM. In Advances in Applied Biotechnology; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2015; Volume 332, pp. 199–208. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Jiang, H. Object-Oriented Method for Urban Vegetation Mapping Using IKONOS Imagery. Int. J. Remote Sens. 2010, 31, 177–196. [Google Scholar] [CrossRef]
- Li, X.; Shao, G. Object-Based Urban Vegetation Mapping with High-Resolution Aerial Photography as a Single Data Source. Int. J. Remote Sens. 2013, 34, 771–789. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A. Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Obida, C.B.; Blackburn, G.A.; Whyatt, J.D.; Semple, K.T. River Network Delineation from Sentinel-1 SAR Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101910. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Wang, C.; You, S.; Wang, Z. Research on Urban Water Body Extraction Using Knowledge-based Decision Tree. Remote Sens. Inf. 2013, 28, 29–33. [Google Scholar]
- Xie, C.; Huang, X.; Zeng, W.; Fang, X. A Novel Water Index for Urban High-Resolution Eight-Band WorldView-2 Imagery. Int. J. Digit. Earth 2016, 9, 925–941. [Google Scholar] [CrossRef]
OA (%) | KC | Precision (%) | F-Score (%) | |
---|---|---|---|---|
RGB | 96.44 | 0.9325 | 94.73 | 95.07 |
RGB + GLCM | 97.43 | 0.9526 | 95.83 | 96.84 |
RGB + Gabor | 96.53 | 0.9325 | 95.00 | 96.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, Y.; Gong, J.; Feng, Q.; Zhou, J.; Sun, J.; Shi, C.; Hu, W. Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model. Remote Sens. 2021, 13, 3165. https://doi.org/10.3390/rs13163165
Li W, Li Y, Gong J, Feng Q, Zhou J, Sun J, Shi C, Hu W. Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model. Remote Sensing. 2021; 13(16):3165. https://doi.org/10.3390/rs13163165
Chicago/Turabian StyleLi, Wenning, Yi Li, Jianhua Gong, Quanlong Feng, Jieping Zhou, Jun Sun, Chenhui Shi, and Weidong Hu. 2021. "Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model" Remote Sensing 13, no. 16: 3165. https://doi.org/10.3390/rs13163165
APA StyleLi, W., Li, Y., Gong, J., Feng, Q., Zhou, J., Sun, J., Shi, C., & Hu, W. (2021). Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model. Remote Sensing, 13(16), 3165. https://doi.org/10.3390/rs13163165