Matrix SegNet: A Practical Deep Learning Framework for Landslide Mapping from Images of Different Areas with Different Spatial Resolutions
Abstract
:1. Introduction
- (1)
- We proposed a practical deep learning framework for landslide mapping from different areas with different spatial resolution images.
- (2)
- We explored the capability of the proposed model in detecting landslides with complicated background objects.
- (3)
- We performed landslide detection by learning features with multiple scales and aspect ratios, without radiometric correction on the input images.
2. Related Works
2.1. Semantic Segmentation Development
2.2. Matrix Nets (xNets)
3. Proposed Architecture
4. Study Area and Dataset Preparation
4.1. Lushan Earthquake-Induced Landslide
4.2. Jiuzhaigou Earthquake-Induced Landslide
4.3. Central Nepal Landslide
4.4. Southern Taiwan Landslide
5. Experiments and Evaluations
5.1. Experimental Settings
5.2. Evaluations
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total. Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Deijns, A.A.J.; Bevington, A.R.; van Zadelhoff, F.; de Jong, S.M.; Geertsema, M.; McDougall, S. Semi-automated detection of landslide timing using harmonic modelling of satellite imagery, buckinghorse river, canada. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101943. [Google Scholar] [CrossRef]
- Lu, P.; Bai, S.; Tofani, V.; Casagli, N. Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS J. Photogramm. Remote. Sens. 2019, 156, 147–159. [Google Scholar] [CrossRef]
- Lu, P.; Qin, Y.; Li, Z.; Mondini, A.C.; Casagli, N. Landslide mapping from multi-sensor data through improved change detection-based markov random field. Remote. Sens. Environ. 2019, 231, 111235. [Google Scholar] [CrossRef]
- Wood, J.L.; Harrison, S.; Reinhardt, L.; Taylor, F.E. Landslide databases for climate change detection and attribution. Geomorphology 2020, 355, 107061. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Muhammad, S.; Li, B.; Wang, L.; Wu, M. A simple but effective landslide detection method based on image saliency. Photogramm. Eng. Remote. Sens. 2017, 83, 351–363. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F. A new technique for landslide mapping from a large-scale remote sensed image: A case study of central nepal. Comput. Geosci. 2017, 100, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shi, W.; Lu, P.; Yan, L.; Wang, Q.; Miao, Z. Landslide mapping from aerial photographs using change detection-based markov random field. Remote. Sens. Environ. 2016, 187, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, B.; Ercanoglu, M. Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the azdavay region (kastamonu, turkey). Comput. Geosci. 2012, 38, 87–98. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by taguchi method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Pradhan, B.; Jebur, M.N.; Shafri, H.Z.M.; Tehrany, M.S. Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 1610–1622. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, B.; Li, B. A practical trial of landslide detection from single-temporal landsat8 images using contour-based proposals and random forest: A case study of national nepal. Landslides 2017, 2018, 453–464. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Yu, T.T. Potential landslide detection with fractal and roughness by lidar data in taiwan. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at wadi tayyah basin, asir region, saudi arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Aimaiti, Y.; Liu, W.; Yamazaki, F.; Maruyama, Y. Earthquake-induced landslide mapping for the 2018 hokkaido eastern iburi earthquake using palsar-2 data. Remote. Sens. 2019, 11, 2351. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Biswajeet, P.; Hossein, R. Improving landslide detection from airborne laser scanning data using optimized dempster–shafer. Remote. Sens. 2018, 10, 1029. [Google Scholar]
- Tran, C.J.; Mora, O.E.; Fayne, J.V.; Lenzano, M.G. Unsupervised classification for landslide detection from airborne laser scanning. Geosciences 2019, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shi, W.; Myint, S.W.; Lu, P.; Wang, Q. Semi-automated landslide inventory mapping from bitemporal aerial photographs using change detection and level set method. Remote. Sens. Environ. 2016, 175, 215–230. [Google Scholar] [CrossRef]
- Rashwan, A.; Kalra, A.; Poupart, P. Matrix nets: A new deep architecture for object detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 2025–2028. [Google Scholar]
- Xie, E.; Sun, P.; Song, X.; Wang, W.; Liu, X.; Liang, D.; Shen, C.; Luo, P. Polarmask: Single shot instance segmentation with polar representation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Seattle, WA, USA, 2019. [Google Scholar]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Li, Y.; Cui, P.; Liang, L.; Pirasteh, S.; Marcato, J.; Gonçalves, W.N.; Li, J. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 5047–5060. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic recognition of landslide based on cnn and texture change detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Yu, H.; Ma, Y.; Wang, L.; Zhai, Y.; Wang, X. A landslide intelligent detection method based on cnn and rsg_r. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 40–44. [Google Scholar]
- Yu, B.; Chen, F.; Xu, C. Landslide detection based on contour-based deep learning framework in case of national scale of nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Honolulu, HI, USA, 2016. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Wang, N.; Chen, F.; Yu, B.; Qin, Y. Segmentation of large-scale remotely sensed images on a spark platform: A strategy for handling massive image tiles with the mapreduce model. ISPRS J. Photogramm. Remote. Sens. 2020, 162, 137–147. [Google Scholar] [CrossRef]
- Melekhov, I.; Tiulpin, A.; Sattler, T.; Pollefeys, M.; Rahtu, E.; Kannala, J. Dgc-net: Dense geometric correspondence network. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV); IEEE: Waikoloa, HI, USA, 2019; pp. 1034–1042. [Google Scholar]
- Wolf, D.; Prankl, J.; Vincze, M. Enhancing semantic segmentation for robotics: The power of 3d entangled forests. IEEE Robot. Autom. Lett. 2016, 1, 49–56. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Yang, L.; Chen, F. Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 3252–3261. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Prakash, N.; Manconi, A.; Loew, S. Mapping landslides on eo data: Performance of deep learning models vs. Traditional machine learning models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Honolulu, HI, USA, 2016. [Google Scholar]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. Rndsi: A ratio normalized difference soil index for remote sensing of urban/suburban environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Xu, J.Z.; Lu, W.; Li, Z.; Khaitan, P.; Zaytseva, V. Building damage detection in satellite imagery using convolutional neural networks. arXiv 2019, arXiv:1910.06444. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Deep Residual Learning for Image Recognition; IEEE: Las Vegas, NV, USA, 2016. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Lina, L.; Chong, X.; Jian, C. Landslide factor sensitivity analysis for landslides triggered by 2013 lushan earthquake using gis platform and certainty factor method. J. Eng. Geol. 2014, 22, 11. [Google Scholar]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and spatial distribution of landslides triggered by the 8th august 2017 mw 6.5 jiuzhaigou earthquake, china. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
- Kargel, J.; Leonard, G.; Shugar, D.; Haritashya, U.; Bevington, A.; Fielding, E.; Fujita, K.; Geertsema, M.; Miles, E.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by nepal’s 2015 gorkha earthquake. Science 2016, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondini, A.C.; Marchesini, I.; Rossi, M.; Chang, K.-T.; Pasquariello, G.; Guzzetti, F. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology 2013, 201, 135–147. [Google Scholar] [CrossRef]
- Lin, C.W.; Chang, W.S.; Liu, S.H.; Tsai, T.T.; Lee, S.P.; Tsang, Y.C.; Shieh, C.L.; Tseng, C.M. Landslides triggered by the 7 august 2009 typhoon morakot in southern taiwan. Eng. Geol. 2011, 123, 3–12. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Dataset | Pre-Event Image Time | Post-Event Image Time | Image Size | Spatial Resolution | Landslide/Non-Landslide Pixel Ratio (%) | No. of Landslides |
---|---|---|---|---|---|---|
Lushan | 31 December 2010 | 31 December 2013 | 5626 × 5088 | 19 m | 0.084 | 11,754 |
Jiuzhaigou | 7 December 2015 | 13 August 2017 14 August 2017 27 September 2019 | 8999 × 9890 | 2.39 m | 0.55 | 3817 |
Nepal | 12 December 2014 | 9 November 2015 | 6627 × 5985 | 2.39 m | 0.26 | 1126 |
Taiwan | 31 December 2008 | 31 December 2009 | 2685 × 4105 | 19 m | 0.60 | 359 |
Recall | Precision | F1-measure | IOU | |
---|---|---|---|---|
U-Net | 20.60 | 96.85 | 33.97 | 20.46 |
SegNet | 0.0487 | 75.12 | 0.0973 | 0.0487 |
Proposed network | 22.33 | 73.49 | 34.26 | 20.67 |
Recall | Precision | F1-measure | IOU | |
---|---|---|---|---|
U-Net | 61.03 | 89.86 | 72.69 | 57.10 |
SegNet | 47.60 | 74.29 | 58.03 | 40.87 |
Proposed network | 70.46 | 82.75 | 76.11 | 61.44 |
Recall | Precision | F1-measure | IOU | |
---|---|---|---|---|
U-Net | 31.37 | 73.40 | 43.96 | 28.17 |
SegNet | 62.29 | 72.76 | 67.12 | 50.51 |
Proposed network | 68.43 | 78.30 | 73.04 | 57.53 |
Recall | Precision | F1-measure | IOU | |
---|---|---|---|---|
U-Net | 28.30 | 81.72 | 42.04 | 26.61 |
SegNet | 90.97 | 43.15 | 58.54 | 41.38 |
Proposed network | 49.39 | 72.59 | 58.79 | 41.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Chen, F.; Xu, C.; Wang, L.; Wang, N. Matrix SegNet: A Practical Deep Learning Framework for Landslide Mapping from Images of Different Areas with Different Spatial Resolutions. Remote Sens. 2021, 13, 3158. https://doi.org/10.3390/rs13163158
Yu B, Chen F, Xu C, Wang L, Wang N. Matrix SegNet: A Practical Deep Learning Framework for Landslide Mapping from Images of Different Areas with Different Spatial Resolutions. Remote Sensing. 2021; 13(16):3158. https://doi.org/10.3390/rs13163158
Chicago/Turabian StyleYu, Bo, Fang Chen, Chong Xu, Lei Wang, and Ning Wang. 2021. "Matrix SegNet: A Practical Deep Learning Framework for Landslide Mapping from Images of Different Areas with Different Spatial Resolutions" Remote Sensing 13, no. 16: 3158. https://doi.org/10.3390/rs13163158
APA StyleYu, B., Chen, F., Xu, C., Wang, L., & Wang, N. (2021). Matrix SegNet: A Practical Deep Learning Framework for Landslide Mapping from Images of Different Areas with Different Spatial Resolutions. Remote Sensing, 13(16), 3158. https://doi.org/10.3390/rs13163158