Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy)
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
2. Materials and Methods
2.1. Study Area
2.2. UAS, Camera and Acquisition Methods
2.3. Data Processing
2.4. Feature Enhancement Operations
2.4.1. Radiometric Enhancement
2.4.2. Spectral Enhancement
2.4.3. Data Reduction
3. Results
4. Discussion
4.1. Non-Archaeological Features
4.2. Features of Archaeological Interest (FoAI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bewley, R.H. Aerial survey for archaeology. Photogramm. Rec. 2003, 18, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Campana, S. Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Gojda, M. The Contribution of Aerial Archaeology to European Landscape Studies: Past Achievements, Recent Developments and Future Perspectives. J. Eur. Archaeol. 1997, 5, 91–104. [Google Scholar] [CrossRef]
- Corsi, C.; Slapšak, B.; Vermeulen, F. (Eds.) Good Practice in Archaeological Diagnostics: Non-Invasive Survey of Complex Archaeological Sites, 1st ed.; Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2013; ISBN 978-3-319-01784-6. [Google Scholar]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Chiabrando, F.; D’Andria, F.; Sammartano, G.; Spanò, A. UAV photogrammetry for archaeological site survey. 3D models at the Hierapolis in Phrygia (Turkey). Virtual Archaeol. Rev. 2018, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Cowley, D.C.; Moriarty, C.; Geddes, G.; Brown, G.L.; Wade, T.; Nichol, C.J. UAVs in Context: Archaeological Airborne Recording in a National Body of Survey and Record. Drones 2017, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Everaerts, J. The Use of Unmanned Aerial Vehicles (UAVs) for Remote Sensing and Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1187–1192. [Google Scholar]
- Gasparini, M.; Moreno-Escribano, J.C.; Monterroso-Checa, A. Photogrammetric Acquisitions in Diverse Archaeological Contexts Using Drones: Background of the Ager Mellariensis Project (North of Córdoba-Spain). Drones 2020, 4, 47. [Google Scholar] [CrossRef]
- Luis-Ruiz, J.; Sedano-Cibrián, J.; Pereda-García, R.; Pérez-Álvarez, R.; Malagón-Picón, B. Optimization of Photogrammetric Flights with UAVs for the Metric Virtualization of Archaeological Sites. Application to Juliobriga (Cantabria, Spain). Appl. Sci. 2021, 11, 1204. [Google Scholar] [CrossRef]
- Megarry, W.; Graham, C.; Gilhooly, B.; O’Neill, B.; Sands, R.; Nyland, A.; Cooney, G. Debitage and Drones: Classifying and Characterising Neolithic Stone Tool Production in the Shetland Islands Using High Resolution Unmanned Aerial Vehicle Imagery. Drones 2018, 2, 12. [Google Scholar] [CrossRef]
- Sammartano, G.; Chiabrando, F.; Spanò, A. Oblique Images and Direct Photogrammetry with a Fixed Wing Platform: First Test and Results in Hierapolis of Phrygia (Tk). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 75–82. [Google Scholar] [CrossRef]
- Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological Site Monitoring: Uav Photogrammetry can be an Answer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study Between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Aqdus, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924. [Google Scholar] [CrossRef]
- Brooke, C.; Clutterbuck, B. Mapping Heterogeneous Buried Archaeological Features Using Multisensor Data from Unmanned Aerial Vehicles. Remote Sens. 2019, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Casana, J.; Wiewel, A.; Cool, A.; Hill, A.C.; Fisher, K.D.; Laugier, E. Archaeological Aerial Thermography in Theory and Practice. Adv. Archaeol. Pr. 2017, 5, 310–327. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. Cult. Herit. 2007, 8, 272–283. [Google Scholar] [CrossRef]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar] [CrossRef] [Green Version]
- James, K.; Nichol, C.J.; Wade, T.; Cowley, D.; Poole, S.G.; Gray, A.; Gillespie, J. Thermal and Multispectral Remote Sensing for the Detection and Analysis of Archaeologically Induced Crop Stress at a UK Site. Drones 2020, 4, 61. [Google Scholar] [CrossRef]
- Šedina, J.; Housarová, E.; Raeva, P. Using RPAS for the detection of archaeological objects using multispectral and thermal imaging. Eur. J. Remote Sens. 2018, 52, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Corns, A.; Shaw, R. High resolution 3-dimensional documentation of archaeological monuments & landscapes using airborne LiDAR. J. Cult. Herit. 2009, 10, e72–e77. [Google Scholar] [CrossRef]
- Davis, D.S.; Sanger, M.C.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2019, 38, 23–37. [Google Scholar] [CrossRef]
- Masini, N.; Coluzzi, R.; Lasaponar, R. On the Airborne Lidar Contribution in Archaeology: From Site Identification to Landscape Investigation. In Laser Scanning, Theory and Applications; Wang, C.-C., Ed.; InTech: Princeton, NJ, USA, 2011; ISBN 978-953-307-205-0. [Google Scholar]
- Ronchi, D.; Limongiello, M.; Barba, S. Correlation among Earthwork and Cropmark Anomalies within Archaeological Landscape Investigation by Using LiDAR and Multispectral Technologies from UAV. Drones 2020, 4, 72. [Google Scholar] [CrossRef]
- Stott, D.; Boyd, D.S.; Beck, A.; Cohn, A.G. Airborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy. Remote Sens. 2015, 7, 1594–1618. [Google Scholar] [CrossRef] [Green Version]
- De Reu, J.; Plets, G.; Verhoeven, G.; De Smedt, P.; Bats, M.; Cherretté, B.; De Maeyer, W.; Deconynck, J.; Herremans, D.; Laloo, P.; et al. Towards a three-dimensional cost-effective registration of the archaeological heritage. J. Archaeol. Sci. 2013, 40, 1108–1121. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. Uav Photogrammetry for Mapping and 3d Modeling—Current Status and Future Perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, G. Taking computer vision aloft—Archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- De Guio, A. Cropping for a Better Future, Vegetation Indices in Archaeology. In Detecting and Understanding Historic Landscapes; PCA Studies; SAP: Mantova, Italy, 2015; pp. 23–60. ISBN 978-88-87115-99-4. [Google Scholar]
- Tan, K.; Wan, Y.; Zhou, X.; Song, D.; Duan, Q. The application of remote sensing technology in the archaeological study of the Mausoleum of Emperor Qinshihuang. Int. J. Remote Sens. 2006, 27, 3347–3363. [Google Scholar] [CrossRef]
- Wilson, D.R. Air Photo Interpretation for Archaeologists, 2nd ed.; The History Press Ltd.: Gloucestershire, UK, 2000. [Google Scholar]
- Beck, A. Archaeological Site Detection: The Importance of Contrast; ISPRS: Hannover, Germany, 2007; pp. 307–312. [Google Scholar]
- Evans, D.; Traviglia, A. Uncovering Angkor: Integrated Remote Sensing Applications in the Archaeology of Early Cambodia. In Satellite Remote Sensing; Lasaponara, R., Masini, N., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2012; Volume 16, pp. 197–230. ISBN 978-90-481-8800-0. [Google Scholar]
- Kaimaris, D.; Patias, P.; Tsakiri, M. Best period for high spatial resolution satellite images for the detection of marks of buried structures. Egypt. J. Remote Sens. Space Sci. 2012, 15, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Kalayci, T.; Lasaponara, R.; Wainwright, J.; Masini, N. Multispectral Contrast of Archaeological Features: A Quantitative Evaluation. Remote Sens. 2019, 11, 913. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Masini, N. (Eds.) Satellite Remote Sensing: A New Tool for Archaeology; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2012; ISBN 978-90-481-8800-0. [Google Scholar]
- Masini, N.; Marzo, C.; Manzari, P.; Belmonte, A.; Sabia, C.; Lasaponara, R. On the characterization of temporal and spatial patterns of archaeological crop-marks. J. Cult. Herit. 2018, 32, 124–132. [Google Scholar] [CrossRef]
- Cowley, D. Remote Sensing for Archaeology and Heritage Management—Site Discovery, Interpretation and Registration; Academia: San Francisco, CA, USA, 2011; pp. 43–55. ISBN 978-963-9911-20-8. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 6th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Agapiou, A.; Lysandrou, V.; Hadjimitsis, D.G. Optical Remote Sensing Potentials for Looting Detection. Geosciences 2017, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.; Welham, K.; Hill, R.A.; Ford, A.L.J. The Application of Vegetation Indices for the Prospection of Archaeological Features in Grass-dominated Environments. Archaeol. Prospect. 2012, 19, 209–218. [Google Scholar] [CrossRef]
- Calleja, J.F.; Pagés, O.R.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Relea, A.C.; Melendi, D.R.; Álvarez, P.F. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Hodges, R.; Mitchell, J. (Eds.) San Vincenzo al Volturno: The Archaeology, Art, and Territory of an Early Medieval Monastery; BAR International Series; B.A.R.: Oxford, UK, 1985; ISBN 978-0-86054-323-7. [Google Scholar]
- Marazzi, F. San Vincenzo al Volturno Nel Passaggio All’età Normanna (Secoli XI–XII): Riposizionamento Politico e Ristrutturazione Materiale. In Il Molise dai Normanni Agli Aragonesi: Arte e Archeologia; Torrossa: Fiesole, Italy, 2012. [Google Scholar]
- Marazzi, F. (Ed.) La “Basilica Maior” Di San Vincenzo al Volturno (Scavi 2000–2007); Studi Vulturnensi, Volturnia edizioni; IRIS: Cerro al Volturno, Italy, 2014; ISBN 978-88-96092-23-1.
- Leppard, S.; Hodges, R.A.; Mitchell, J. San Vincenzo 5—Excavations of San Vincenzo Maggiore and the Associated Temporary and Collective Workshops; Archaeology Data Service: York, UK, 2009. [Google Scholar]
- Marazzi, F. Archeologia Della Parola: Percorsi e Strumenti per la Tradizione Della Memoria nel MONASTERO di San Vincenzo al Volturno; IRIS: Cerro al Volturno, Italy, 2012; ISBN 978-88-96092-14-9.
- Banerjee, R.; Srivastava, P.K. Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing. Land Use Policy 2013, 34, 193–203. [Google Scholar] [CrossRef]
- Bradford, J.S.P. The Apulia Expedition: An Interim Report. Antiquity 1950, 24, 84–94. [Google Scholar] [CrossRef]
- Bradford, J. ‘Buried Landscapes’ in Southern Italy. Antiquity 1949, 23, 58–72. [Google Scholar] [CrossRef]
- Furlanetto, P.; Bondesan, A. Geomorphological evolution of the plain between the Livenza and Piave Rivers in the sixteenth and seventeenth centuries inferred by historical maps analysis (Mainland of Venice, Northeastern Italy). J. Maps 2014, 11, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Nicu, I.C.; Stoleriu, C.C. Land use changes and dynamics over the last century around churches of Moldavia, Bukovina, Northern Romania—Challenges and future perspectives. Habitat Int. 2019, 88, 101979. [Google Scholar] [CrossRef]
- Riley, D.N. New aerial reconnaissance in Apulia. Pap. Br. Sch. Rome 1992, 60, 291–307. [Google Scholar] [CrossRef]
- San-Antonio-Gómez, C.; Velilla, C.; Manzano-Agugliaro, F. Urban and landscape changes through historical maps: The Real Sitio of Aranjuez (1775–2005), a case study. Comput. Environ. Urban Syst. 2014, 44, 47–58. [Google Scholar] [CrossRef]
- Schuppert, C.; Dix, A. Reconstructing Former Features of the Cultural Landscape Near Early Celtic Princely Seats in Southern Germany. Soc. Sci. Comput. Rev. 2009, 27, 420–436. [Google Scholar] [CrossRef]
- Weber, S.A.; Yool, S.R. Detection of subsurface archaeological architecture by computer assisted airphoto interpretation. Geoarchaeology 1999, 14, 481–493. [Google Scholar] [CrossRef]
- Theiler, J.P.; Cai, D.M. Resampling Approach for Anomaly Detection in Multispectral Images. In Proceedings of the AeroSense 2003, Orlando, FL, USA, 21–25 April 2003; Volume 5093, pp. 230–241. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.; Sarris, A.; Georgopoulos, A.; Alexakis, D.D. Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region. J. Archaeol. Sci. 2013, 40, 1479–1492. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. On the potential of QuickBird data for archaeological prospection. Int. J. Remote Sens. 2006, 27, 3607–3614. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Identification of archaeological buried remains based on the normalized difference vegetation index (NDVI) from Quickbird satellite data. IEEE Geosci. Remote Sens. Lett. 2006, 3, 325–328. [Google Scholar] [CrossRef]
- Campana, S.; Forte, M.; Consiglio Nazionale Delle Ricerche (Italy) (Eds.) From Space to Place: 2nd International Conference on Remote Sensing in Archaeology, Proceedings of the 2nd International Workshop, CNR, Rome, Italy, 4–7 December 2006; BAR International Series; Archeopress: Oxford, UK, 2006; ISBN 978-1-84171-998-6. [Google Scholar]
- Hum, Y.C.; Lai, K.W.; Salim, M.I.M. Multiobjectives bihistogram equalization for image contrast enhancement. Complexity 2014, 20, 22–36. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Pearson Series in Geographic Information Science; Pearson Education, Inc.: Glenview, IL, USA, 2016; ISBN 978-0-13-405816-0. [Google Scholar]
- Shanmugavadivu, P.; Balasubramanian, K. Image Inversion and Bi Level Histogram Equalization for Contrast Enhancement. Int. J. Comput. Appl. 2010, 1, 69–73. [Google Scholar] [CrossRef]
- Zimmerman, J.; Pizer, S.; Staab, E.; Perry, J.; McCartney, W.; Brenton, B. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imaging 1988, 7, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G.; Themistocleous, K.; Papadavid, G.; Toulios, L. Detection of archaeological crop marks in Cyprus using vegetation indices from Landsat TM/ETM+ satellite images and field spectroscopy measurements. Remote Sens. 2010, 7831, 78310. [Google Scholar] [CrossRef]
- Sripada, R.P.; Schmidt, J.P.; Dellinger, A.E.; Beegle, D.B. Evaluating Multiple Indices from a Canopy Reflectance Sensor to Estimate Corn N Requirements. Agron. J. 2008, 100, 1553–1561. [Google Scholar] [CrossRef]
- Moriarty, C.; Cowley, D.C.; Wade, T.; Nichol, C.J. Deploying multispectral remote sensing for multi-temporal analysis of archaeological crop stress at Ravenshall, Fife, Scotland. Archaeol. Prospect. 2018, 26, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Deering, D.; Schell, J.A.; Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]; NASA: Washington, DC, USA, 1973.
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. Archaeol. Sci. 2007, 34, 795–803. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Kaufman, Y.; Remer, L. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Luo, L.; Bachagha, N.; Yao, Y.; Liu, C.; Shi, P.; Zhu, L.; Shao, J.; Wang, X. Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sens. 2019, 11, 2711. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Estornell, J.; Martí-Gavliá, J.M.; Sebastiá, M.T.; Mengual, J. Principal component analysis applied to remote sensing. Model. Sci. Educ. Learn. 2013, 6, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Abate, N.; Masini, N. On the Use of Google Earth Engine and Sentinel Data to Detect Lost Sections of Ancient Roads. The Case of Via Appia. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N.; Rizzo, E.; Orefici, G. New discoveries in the Piramide Naranjada in Cahuachi (Peru) using satellite, Ground Probing Radar and magnetic investigations. J. Archaeol. Sci. 2011, 38, 2031–2039. [Google Scholar] [CrossRef]
- Agapiou, A. Enhancement of Archaeological Proxies at Non-Homogenous Environments in Remotely Sensed Imagery. Sustainability 2019, 11, 3339. [Google Scholar] [CrossRef] [Green Version]
- Orlando, P.; de Villa, B. Remote Sensing Applications in Archaeology. Archeol. Calc. 2011, 22, 147–168. [Google Scholar]
- Abate, N.; Lasaponara, R. Preventive Archaeology Based on Open Remote Sensing Data and Tools: The Cases of Sant’Arsenio (SA) and Foggia (FG), Italy. Sustainability 2019, 11, 4145. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Masini, N. Preserving the Past from Space: An Overview of Risk Estimation and Monitoring Tools. In GIS and Environmental Monitoring; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; Volume 16, pp. 61–88. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Traviglia, A. Archaeological Usability of Hyperspectral Images: Successes and Failures of Image Processing Techniques; BAR: Delhi, India, 2006; pp. 123–130. [Google Scholar]
- Abate, N.; Elfadaly, A.; Masini, N.; Lasaponara, R. Multitemporal 2016–2018 Sentinel-2 Data Enhancement for Landscape Archaeology: The Case Study of the Foggia Province, Southern Italy. Remote Sens. 2020, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- DeRoin, J.-P.; Téreygeol, F.; Heckes, J. Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions—Case study from Jabali, Yemen. J. Archaeol. Sci. 2011, 38, 101–114. [Google Scholar] [CrossRef]
- Traviglia, A.; Cottica, D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice: The case of the lost settlement of Constanciacus. J. Archaeol. Sci. 2011, 38, 2040–2050. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Hodges, R.; Mitchell, J.; Coutts, C.M.; British School at Rome, Centro italiano di studi sull’alto Medioevo (Eds.) San Vincenzo al Volturno: The 1980–86 Excavations. In Archaeological Monographs of the British School at Rome; British School at Rome: London, UK, 1993; ISBN 978-0-904152-24-1. [Google Scholar]
- Horn, W.; Born, E.; Jones, C.W.; Dupree, A.H. The Plan of St. Gall: A Study of the Architecture & Economy of & Life in a Paradigmatic Carolingian Monastery; California studies in the History of Art; University of California Press: Berkeley, CA, USA, 1979; ISBN 978-0-520-01724-5. [Google Scholar]
- Marazzi, F. Le Città Dei Monaci: Storia Degli Spazi Che Avvicinano a Dio, 1st ed.; Architettura; Jaca Book: Milan, Italy, 2015; ISBN 978-88-16-41292-7. [Google Scholar]
- Bowes, K.D.; Francis, K.; Hodges, R.; British School at Rome (Eds.) Between Text and Territory: Survey and Excavations in the Terra of San Vincenzo al Volturno. In Archaeological Monographs of the British School at Rome; British School at Rome: London, UK, 2006; ISBN 978-0-904152-48-7. [Google Scholar]
flight dates | 1 July, 12 August, 16 September 2019 |
multispectral camera | Parrot Sequoia+ |
reflectance panel | Parrot Sequoia reflectance panel |
RGB resolution | 16 mpx |
multispectral resolution | 2 mpx |
acquired bands | Green, Red, Red-Edge, NIR |
used UAS | Parrot Ag Disco Pro |
useful hectares per flight | 6.5 ha |
flight height | 50 m |
flight speed | 13 m/s ca. |
time of day | between 10 and 12 a.m. |
multispectral photos per flight | 580 |
RGB photos per flight | 145 |
overlap | 80% (frontal and lateral) |
dense cloud (high quality) | 6.667.479 points |
density point | 98.7 points/m2 |
tie point | 454,576 |
Index | Equation | Reference |
---|---|---|
Difference Vegetation Index (DVI) | [73] | |
Green Difference Vegetation Index (GDVI) | [74] | |
Green Normalised Difference Vegetation Index (GNDVI) | [74] | |
Green Ratio Vegetation Index (GRVI) | [42] | |
Normalised Difference Vegetation Index (NDVI) | [75] | |
Optimised Soil Adjusted Vegetation Index (OSAVI) | [42] | |
Modified Simple Ratio (MSR) | [72] | |
Advanced Vegetation Index (AVI) | [42] | |
Nonlinear Vegetation Index (NLI) | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abate, N.; Frisetti, A.; Marazzi, F.; Masini, N.; Lasaponara, R. Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sens. 2021, 13, 2719. https://doi.org/10.3390/rs13142719
Abate N, Frisetti A, Marazzi F, Masini N, Lasaponara R. Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sensing. 2021; 13(14):2719. https://doi.org/10.3390/rs13142719
Chicago/Turabian StyleAbate, Nicodemo, Alessia Frisetti, Federico Marazzi, Nicola Masini, and Rosa Lasaponara. 2021. "Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy)" Remote Sensing 13, no. 14: 2719. https://doi.org/10.3390/rs13142719
APA StyleAbate, N., Frisetti, A., Marazzi, F., Masini, N., & Lasaponara, R. (2021). Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sensing, 13(14), 2719. https://doi.org/10.3390/rs13142719