Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review
Abstract
:1. Introduction
2. Theoretical Basis
3. Historical Review to State-of-the-Art
3.1. Early Satellite Analyses
3.2. ERBE
3.3. CERES
3.3.1. CERES-TRMM
3.3.2. CERES-Terra
3.3.3. CERES-Terra/Aqua
3.4. Application to Other Instruments
4. Recent Advances That Support and Build Upon Existing Approaches
4.1. Machine Learning
4.2. Semi-Physical Approach
5. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J. The albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A.; Platnick, S.; Bhartia, P.K.; Duncan, B.; L’Ecuyer, T.; Heidinger, A.; Skofronick-Jackson, G.; Loeb, N.; Schmit, T.; Smith, N. Satellites See the World’s Atmosphere. Meteorol. Monogr. 2019, 59, 4.1–4.53. [Google Scholar] [CrossRef]
- Jacobowitz, H.; Soule, H.V.; Kyle, H.L.; House, F.B. The Earth Radiation Budget (ERB) Experiment: An overview. J. Geophys. Res. Atmos. 1984, 89, 5021–5038. [Google Scholar] [CrossRef]
- Barkstrom, B.R. The Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc. 1984, 65, 1170–1185. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B.; Louis Smith, G.; Cooper, J.E. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Raschke, E.; Vonder Haar, T.H.; Bandeen, W.R.; Pasternak, M. The Annual Radiation Balance of the Earth-Atmosphere System During 1969–70 from Nimbus 3 Measurements. J. Atmos. Sci. 1973, 30, 341–364. [Google Scholar] [CrossRef] [Green Version]
- House, F.B.; Gruber, A.; Hunt, G.E.; Mecherikunnel, A.T. History of satellite missions and measurements of the Earth Radiation Budget (1957–1984). Rev. Geophys. 1986, 24, 357–377. [Google Scholar] [CrossRef]
- Dewitte, S.; Clerbaux, N. Measurement of the Earth Radiation Budget at the Top of the Atmosphere—A Review. Remote Sens. 2017, 9, 1143. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.; Smith, G.L.; Kato, S.; Loeb, N.G.; Kopp, G.; Shrestha, A.K. On the Lessons Learned from the Operations of the ERBE Nonscanner Instrument in Space and the Production of the Nonscanner TOA Radiation Budget Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5936–5947. [Google Scholar] [CrossRef]
- Stephens, G.L.; Li, J.; Wild, M.; Clayson, C.A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P.W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696. [Google Scholar] [CrossRef]
- Trenberth, K.E. An imperative for climate change planning: Tracking Earth’s global energy. Curr. Opin. Environ. Sustain. 2009, 1, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Folini, D.; Hakuba, M.Z.; Schär, C.; Seneviratne, S.I.; Kato, S.; Rutan, D.; Ammann, C.; Wood, E.F.; König-Langlo, G. The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim. Dyn. 2015, 44, 3393–3429. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Wielicki, B.A. Satellites and Satellite Remote Sensing: Earth’s Radiation Budget. In Encyclopedia of Atmospheric Sciences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 67–76. ISBN 9780123822260. [Google Scholar]
- Vonder Haar, T.H.; Suomi, V.E. Measurements of the Earth’s Radiation Budget from Satellites During a Five-Year Period. Part I: Extended Time and Space Means. J. Atmos. Sci. 1971, 28, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.J.; He, H.; Soden, B.J.; Oreopoulos, L.; Myhre, G.; Forster, P.M.; Smith, C.J. Observational Evidence of Increasing Global Radiative Forcing. Geophys. Res. Lett. 2021, 48, e2020GL091585. [Google Scholar] [CrossRef]
- Myers, T.A.; Scott, R.C.; Zelinka, M.D.; Klein, S.A.; Norris, J.R.; Caldwell, P.M. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Chang. 2021, 11, 501–507. [Google Scholar] [CrossRef]
- Forster, P.M.F.; Gregory, J.M. The Climate Sensitivity and Its Components Diagnosed from Earth Radiation Budget Data. J. Clim. 2006, 19, 39–52. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Ceppi, P. Trends in the CERES Dataset, 2000–2013: The Effects of Sea Ice and Jet Shifts and Comparison to Climate Models. J. Clim. 2014, 27, 2444–2456. [Google Scholar] [CrossRef] [Green Version]
- Tett, S.F.B.; Mineter, M.J.; Cartis, C.; Rowlands, D.J.; Liu, P. Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part I: Tuning. J. Clim. 2013, 26, 9348–9366. [Google Scholar] [CrossRef] [Green Version]
- Tett, S.F.B.; Rowlands, D.J.; Mineter, M.J.; Cartis, C. Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part II: Climate Sensitivity. J. Clim. 2013, 26, 9367–9383. [Google Scholar] [CrossRef] [Green Version]
- Suttles, J.; Green, R.; Minnis, P.; Smith, G.; Staylor, W.; Wielicki, B.; Walker, I.; Young, D.; Taylor, V.; Stowe, L. Angular Radiation Models for Earth-Atmosphere Systems, Vol. I Shortwave Radiation; NASA Reference Publication 1184; NASA: Hampton, VA, USA, 1988. [Google Scholar]
- Loeb, N.G.; Manalo-Smith, N.; Kato, S.; Miller, W.F.; Gupta, S.K.; Minnis, P.; Wielicki, B.A. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteorol. 2003, 42, 240–265. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Ocean. Technol. 2005, 22, 338–351. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech. 2015, 8, 611–632. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Manalo-Smith, N.; Su, W.; Shankar, M.; Thomas, S. CERES top-of-atmosphere earth radiation budget climate data record: Accounting for in-orbit changes in instrument calibration. Remote Sens. 2016, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Priestley, K.J.; Kratz, D.P.; Geier, E.B.; Green, R.N.; Wielicki, B.A.; Hinton, P.O.; Nolan, S.K. Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument. J. Appl. Meteorol. 2001, 40, 822–835. [Google Scholar] [CrossRef]
- Priestley, K.J.; Barkstrom, B.R.; Lee, R.B.; Green, R.N.; Thomas, S.; Wilson, R.S.; Spence, P.L.; Paden, J.; Pandey, D.K.; Al-Hajjah, A. Postlaunch Radiometric Validation of the Clouds and the Earth’s Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft through 1999. J. Appl. Meteorol. 2000, 39, 2249–2258. [Google Scholar] [CrossRef]
- Arking, A. The Angular Distribution of Scattered Radiation and the Earth Albedo as Observed from TIROS. Annu. Res. Rep. Goddard Inst. Sp. Stud. 1965, 1, 47–67. [Google Scholar]
- Arking, A.; Levine, J.S. Earth Albedo Measurements: July 1963 to June 1964. J. Atmos. Sci. 1967, 24, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Bandeen, W.R.; Halev, M.E.; Strange, I. A Radiation Climatology in the Visible and Infrared from the Tiros Meteorological Satellites; NASA Tech. Note D-2534; National Aeronautics and Space Administration: Washington, DC, USA, 1965. [Google Scholar]
- Rasool, S.I.; Prabhakara, C. Heat budget of the Southern Hemisphere. In Problems of Atmospheric Circulation; Garcia, R.V., Malone, T.F., Eds.; Spartan Books: New York, NY, USA, 1966; pp. 76–92. [Google Scholar]
- Raschke, E.; Bandeen, W.R. The Radiation Balance of the Planet Earth from Radiation Measurements of the Satellite Nimbus II. J. Appl. Meteorol. 1970, 9, 215–238. [Google Scholar] [CrossRef]
- Taylor, V.R.; Stowe, L.L. Reflectance characteristics of uniform Earth and cloud surfaces derived from NIMBUS-7 ERB. J. Geophys. Res. Atmos. 1984, 89, 4987–4996. [Google Scholar] [CrossRef]
- Stowe, L.L.; Wellemeyer, C.G.; Eck, T.F.; Yeh, H.Y.M. The Nimbus-7 CLOUD DATA PROCecessing TEAM Nimbus-7 Global Cloud Climatology. part I: Algorithms and Validation. J. Clim. 1988, 1, 445–470. [Google Scholar] [CrossRef] [Green Version]
- Kidder, S.Q.; Vonder Haar, T.H. Satellite Meteorology: An Introduction; Elsevier Press: Amsterdam, The Netherlands, 1995; p. 466. [Google Scholar]
- Wielicki, B.A.; Green, R.N. Cloud Identification for ERBE Radiative Flux Retrieval. J. Appl. Meteorol. 1989, 28, 1133–1146. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.L.; Green, R.N.; Raschke, E.; Avis, L.M.; Suttles, J.T.; Wielicki, B.A.; Davies, R. Inversion methods for satellite studies of the Earth’s Radiation Budget: Development of algorithms for the ERBE Mission. Rev. Geophys. 1986, 24, 407. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Radiative Transfer; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Staylor, W.F.; Suttles, J.T. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements. J. Clim. Appl. Meteorol. 1986, 25, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Loukachine, K.; Manalo-Smith, N.; Wielicki, B.A.; Young, D.F. Angular distribution models for top-of tmosphere radiative flux estimation from the clouds and the Earth’s Radiant Energy system instrument on the Tropical Rainfall Measuring Mission satellite. Part II: Validation. J. Appl. Meteorol. 2003, 42, 1748–1769. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Wielicki, B.A. Defining top-of-the-atmosphere flux reference level for earth radiation budget studies. J. Clim. 2002, 15, 3301–3309. [Google Scholar] [CrossRef]
- Minnis, P.; Young, D.F.; Wielicki, B.A.; Heck, P.W.; Dong, X.; Stowe, L.L.; Welch, R.M. CERES cloud properties derived from multispectral VIRS data. In Proceedings of the Satellite Remote Sensing of Clouds and the Atmosphere IV, 20–22 September 1999; Russell, J.E., Ed.; SPIE: Florence, Italy, 1999; Volume 3867, pp. 91–102. [Google Scholar]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N.; Doelling, D.R. Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra Satellite. Part II: Validation. J. Atmos. Ocean. Technol. 2007, 24, 564–584. [Google Scholar] [CrossRef]
- Kato, S.; Loeb, N.G. Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res. Atmos. 2005, 110, 1–16. [Google Scholar] [CrossRef]
- Ahmad, S.P.; Deering, D.W. A simple analytical function for bidirectional reflectance. J. Geophys. Res. 1992, 97, 18867. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech. 2015, 8, 3297–3313. [Google Scholar] [CrossRef] [Green Version]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 455–475. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-Optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy: Effect of Crown Shape and Mutual Shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Corbett, J.; Su, W. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models. Atmos. Meas. Tech. 2015, 8, 3163–3175. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L.; et al. CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data-Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [Google Scholar] [CrossRef]
- Chang, F.-L.; Minnis, P.; Ayers, J.K.; McGill, M.J.; Palikonda, R.; Spangenberg, D.A.; Smith, W.L.; Yost, C.R. Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4. J. Geophys. Res. 2010, 115, D00J05. [Google Scholar] [CrossRef]
- Yang, P.; Hong, G.; Kattawar, G.W.; Minnis, P.; Hu, Y. Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1948–1957. [Google Scholar] [CrossRef]
- Roca, R.; Brogniez, H.; Chambon, P.; Chomette, O.; Cloché, S.; Gosset, M.E.; Mahfouf, J.F.; Raberanto, P.; Viltard, N. The megha-tropiques mission: A review after three years in orbit. Front. Earth Sci. 2015, 3, 17. [Google Scholar] [CrossRef]
- Viollier, M.; Standfuss, C.; Chomette, O.; Quesney, A. Top-of-atmosphere radiance-to-flux conversion in the SW domain for the ScaRaB-3 instrument on megha-tropiques. J. Atmos. Ocean. Technol. 2009, 26, 2161–2171. [Google Scholar] [CrossRef]
- Tornow, F.; Domenech, C.; Fischer, J. On the use of geophysical parameters for the top-of-atmosphere shortwave clear-sky radiance-to-flux conversion in EarthCARE. J. Atmos. Ocean. Technol. 2019, 36, 717–732. [Google Scholar] [CrossRef]
- Domenech, C.; Wehr, T. Use of artificial neural networks to retrieve TOA SW radiative fluxes for the EarthCARE mission. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1839–1849. [Google Scholar] [CrossRef]
- Harries, J.E.; Russell, J.E.; Hanafin, J.A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; et al. The Geostationary Earth Radiation Budget Project. Bull. Am. Meteorol. Soc. 2005, 86, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Gristey, J.J.; Chiu, J.C.; Gurney, R.J.; Morcrette, C.J.; Hill, P.G.; Russell, J.E.; Brindley, H.E. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model. Atmos. Chem. Phys. 2018, 18, 5129–5145. [Google Scholar] [CrossRef] [Green Version]
- Ipe, A.; Bertrand, C.; Clerbaux, N.; Dewitte, S.; Gonzalez, L. Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 data. Atmos. Res. 2004, 72, 17–37. [Google Scholar] [CrossRef]
- Ipe, A.; Bertrand, C.; Clerbaux, N.; Dewitte, S.; Gonzalez, L. The GERB Edition 1 products SEVIRI scene identification. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XII, 17–19 September 2007; SPIE: Florence, Italy, 2007; Volume 6745, p. 674512. [Google Scholar]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Brindley, H.E.; Russell, J.E. An assessment of Saharan dust loading and the corresponding cloud-free longwave direct radiative effect from geostationary satellite observations. J. Geophys. Res. 2009, 114, D23201. [Google Scholar] [CrossRef] [Green Version]
- Clerbaux, N.; Russell, J.E.; Dewitte, S.; Bertrand, C.; Caprion, D.; De Paepe, B.; Gonzalez Sotelino, L.; Ipe, A.; Bantges, R.; Brindley, H.E. Comparison of GERB instantaneous radiance and flux products with CERES Edition-2 data. Remote Sens. Environ. 2009, 113, 102–114. [Google Scholar] [CrossRef]
- Su, W.; Liang, L.; Doelling, D.R.; Minnis, P.; Duda, D.P.; Khlopenkov, K.; Thieman, M.M.; Loeb, N.G.; Kato, S.; Valero, F.P.J.; et al. Determining the Shortwave Radiative Flux From Earth Polychromatic Imaging Camera. J. Geophys. Res. Atmos. 2018, 123, 11479–11491. [Google Scholar] [CrossRef]
- Su, W.; Minnis, P.; Liang, L.; Duda, D.P.; Khlopenkov, K.; Thieman, M.M.; Yu, Y.; Smith, A.; Lorentz, S.; Feldman, D.; et al. Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements. Atmos. Meas. Tech. 2020, 13, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Gristey, J.J.; Chiu, J.C.; Gurney, R.J.; Han, S.-C.; Morcrette, C.J. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. J. Geophys. Res. Atmos. 2017, 122, 1114–1131. [Google Scholar] [CrossRef]
- Swartz, W.; Lorentz, S.; Papadakis, S.; Huang, P.; Smith, A.; Deglau, D.; Yu, Y.; Reilly, S.; Reilly, N.; Anderson, D. RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements. Remote Sens. 2019, 11, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loukachine, K.; Loeb, N.G. Application of an artificial neural network simulation for top-of-atmosphere radiative flux estimation from CERES. J. Atmos. Ocean. Technol. 2003, 20, 1749–1757. [Google Scholar] [CrossRef]
- Loukachine, K.; Loeb, N.G. Top-of-atmosphere flux retrievals from CERES using artificial neural networks. Remote Sens. Environ. 2004, 93, 381–390. [Google Scholar] [CrossRef]
- Thampi, B.V.; Wong, T.; Lukashin, C.; Loeb, N.G. Determination of CERES TOA fluxes using machine learning algorithms. Part I: Classification and retrieval of CERES cloudy and clear scenes. J. Atmos. Ocean. Technol. 2017, 34, 2329–2345. [Google Scholar] [CrossRef] [PubMed]
- Tornow, F.; Domenech, C.; Barker, H.W.; Preusker, R.; Fischer, J. Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean. Atmos. Meas. Tech. 2020, 13, 3909–3922. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838. [Google Scholar] [CrossRef]
- Tornow, F.; Domenech, C.; Cole, J.N.S.; Madenach, N.; Fischer, J. Changes in toa sw fluxes over marine clouds when estimated via semiphysical angular distribution models. J. Atmos. Ocean. Technol. 2021, 38, 669–684. [Google Scholar] [CrossRef]
Mission | Analysis Period | Scene Types (# Scenes) | Notes | Reference(s) |
---|---|---|---|---|
TIROS IV | 1962 | Low latitudes (1) | First to account for changes in reflection with solar zenith angle | [28] |
TIROS VII | 1963–1964 | N/A: isotropic | Isotropic assumption resulted in underestimate of albedo in polar regions | [30] |
TIROS VII | 1963–1964 | Near-global (1) | Similar approach to TIROS IV but improved statistics | [29] |
Nimbus II | 1966 | Global (1) | First global anisotropic function | [32] |
Nimbus III | 1969–1970 | Ocean, snow, land-cloud combination (3) | Multiple scene types, “gross-empirical” models derived from a variety of sources including aircraft, balloons, and early satellite data | [6] |
Nimbus VII | 1978–1979 | Ocean, land, snow-ice combination, cloud (4) | First attempt at dynamic cloud identification | [3,33] |
Scene ID Number | Cloud Fraction | Surface Type |
---|---|---|
1 | Cloud-free (0–5%) | Ocean |
2 | Cloud-free (0–5%) | Land |
3 | Cloud-free (0–5%) | Snow |
4 | Cloud-free (0–5%) | Desert |
5 | Cloud-free (0–5%) | Land-ocean mix |
6 | Partly cloudy (5–50%) | Ocean |
7 | Partly cloudy (5–50%) | Land or desert |
8 | Partly cloudy (5–50%) | Land-ocean mix |
9 | Mostly cloudy (50–95%) | Ocean |
10 | Mostly cloudy (50–95%) | Land or desert |
11 | Mostly cloudy (50–95%) | Land-ocean mix |
12 | Overcast | All |
Surface Type | Cloud Thermodynamic Phase | Cloud Fraction (%) | Cloud Optical Depth |
---|---|---|---|
Ocean (336) | Liquid, ice | 0.1–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90, 90–95, 95–99.9, 99.9–100 | 0.01–1.0, 1.0–2.5, 2.5–5.0, 5.0–7.5, 7.5–10, 10–12.5, 12.5–15, 15–17.5, 17.5–20, 20–25, 25–30, 30–40, 40–50, >50 |
Moderate–high tree/shrub coverage (60), low–moderate tree/shrub coverage (60), dark desert (60), bright desert (60) | Liquid, ice | 0.1–25, 25–50, 50–75, 75–99.9, 99.9–100 | 0.01–2.5, 2.5–6, 6–10, 10–18, 18–40, >40 |
Surface Type | Cloud Fraction (%) | Surface Brightness | Snow/Sea Ice Fraction (%) | Cloud Optical Depth |
---|---|---|---|---|
Permanent snow (10) | 0.0–0.1 | Bright, dark * | - | - |
0.1–25 | All | - | All | |
25–50 | All | - | All | |
50–75 | All | - | All | |
75–99.9 | All | - | All | |
99.9–100 | Bright, dark * | - | Thin (τ ≤ 10), thick (τ > 10) | |
Fresh snow (25), sea ice (25) | 0.0–0.1 | All | 0.0–0.1 | - |
0.0–0.1 | All | 0.1–25 | - | |
0.0–0.1 | All | 25–50 | - | |
0.0–0.1 | All | 50–75 | - | |
0.0–0.1 | All | 75–99.9 | - | |
0.0–0.1 | Bright, dark * | 99.9–100 | - | |
0.1–25 | All | 0.0–0.1 | All | |
0.1–25 | All | 0.1–25 | All | |
0.1–25 | All | 25–50 | All | |
0.1–25 | All | 50–75 | All | |
0.1–25 | All | 75–99.9 | All | |
25–50 | All | 0.0–0.1 | All | |
25–50 | All | 0.1–25 | All | |
25–50 | All | 25–50 | All | |
25–50 | All | 50–75 | All | |
50–75 | All | 0.0–0.1 | All | |
50–75 | All | 0.1–25 | All | |
50–75 | All | 25–50 | All | |
75–99.9 | All | 0.0–0.1 | All | |
75–99.9 | All | 0.1–25 | All | |
99.9–100 | Bright, dark * | All | Thin (τ ≤ 10), thick (τ > 10) |
Cloud Fraction (%) | Sea Ice Fraction (%) | Surface Brightness | Cloud Optical Depth | Cloud Phase |
---|---|---|---|---|
0–1 (8) | 0.0–1 | All | - | - |
1–25 | All | - | - | |
25–50 | All | - | - | |
50–75 | All | - | - | |
75–99 | All | - | - | |
99–100 | Dark, mid, bright * | - | - | |
1–25 (8), 25–50 (8), 50–75 (8) | 0.0–1 | All | All | All |
1–25 | All | All | All | |
25–50 | All | All | All | |
50–75 | All | All | All | |
75–99 | All | All | All | |
99–100 | Dark, mid, bright * | All | ||
75–99 (16) | 0.0–1 | All | < 1, ≥ 1 | All |
1–25 | All | < 1, ≥ 1 | All | |
25–50 | All | < 1, ≥ 1 | All | |
50–75 | All | < 1, ≥ 1 | All | |
75–99 | All | < 1, ≥ 1 | All | |
99–100 | Dark, mid, bright * | < 1, ≥ 1 | All | |
99–100 (N/A) | All | 0–0.6 | Continuous in | Liquid, ice * |
All | 0.6–0.7 | Continuous in | Liquid, ice * | |
All | 0.7–0.8 | Continuous in | Liquid, ice * | |
All | 0.8–0.9 | Continuous in | Liquid, ice * | |
All | 0.9–1.0 | Continuous in | Liquid, ice * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gristey, J.J.; Su, W.; Loeb, N.G.; Vonder Haar, T.H.; Tornow, F.; Schmidt, K.S.; Hakuba, M.Z.; Pilewskie, P.; Russell, J.E. Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review. Remote Sens. 2021, 13, 2640. https://doi.org/10.3390/rs13132640
Gristey JJ, Su W, Loeb NG, Vonder Haar TH, Tornow F, Schmidt KS, Hakuba MZ, Pilewskie P, Russell JE. Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review. Remote Sensing. 2021; 13(13):2640. https://doi.org/10.3390/rs13132640
Chicago/Turabian StyleGristey, Jake J., Wenying Su, Norman G. Loeb, Thomas H. Vonder Haar, Florian Tornow, K. Sebastian Schmidt, Maria Z. Hakuba, Peter Pilewskie, and Jacqueline E. Russell. 2021. "Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review" Remote Sensing 13, no. 13: 2640. https://doi.org/10.3390/rs13132640
APA StyleGristey, J. J., Su, W., Loeb, N. G., Vonder Haar, T. H., Tornow, F., Schmidt, K. S., Hakuba, M. Z., Pilewskie, P., & Russell, J. E. (2021). Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review. Remote Sensing, 13(13), 2640. https://doi.org/10.3390/rs13132640